860 research outputs found

    Projected principal component analysis in factor models

    Full text link
    This paper introduces a Projected Principal Component Analysis (Projected-PCA), which employs principal component analysis to the projected (smoothed) data matrix onto a given linear space spanned by covariates. When it applies to high-dimensional factor analysis, the projection removes noise components. We show that the unobserved latent factors can be more accurately estimated than the conventional PCA if the projection is genuine, or more precisely, when the factor loading matrices are related to the projected linear space. When the dimensionality is large, the factors can be estimated accurately even when the sample size is finite. We propose a flexible semiparametric factor model, which decomposes the factor loading matrix into the component that can be explained by subject-specific covariates and the orthogonal residual component. The covariates' effects on the factor loadings are further modeled by the additive model via sieve approximations. By using the newly proposed Projected-PCA, the rates of convergence of the smooth factor loading matrices are obtained, which are much faster than those of the conventional factor analysis. The convergence is achieved even when the sample size is finite and is particularly appealing in the high-dimension-low-sample-size situation. This leads us to developing nonparametric tests on whether observed covariates have explaining powers on the loadings and whether they fully explain the loadings. The proposed method is illustrated by both simulated data and the returns of the components of the S&P 500 index.Comment: Published at http://dx.doi.org/10.1214/15-AOS1364 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Robust Estimation of High-Dimensional Mean Regression

    Full text link
    Data subject to heavy-tailed errors are commonly encountered in various scientific fields, especially in the modern era with explosion of massive data. To address this problem, procedures based on quantile regression and Least Absolute Deviation (LAD) regression have been devel- oped in recent years. These methods essentially estimate the conditional median (or quantile) function. They can be very different from the conditional mean functions when distributions are asymmetric and heteroscedastic. How can we efficiently estimate the mean regression functions in ultra-high dimensional setting with existence of only the second moment? To solve this problem, we propose a penalized Huber loss with diverging parameter to reduce biases created by the traditional Huber loss. Such a penalized robust approximate quadratic (RA-quadratic) loss will be called RA-Lasso. In the ultra-high dimensional setting, where the dimensionality can grow exponentially with the sample size, our results reveal that the RA-lasso estimator produces a consistent estimator at the same rate as the optimal rate under the light-tail situation. We further study the computational convergence of RA-Lasso and show that the composite gradient descent algorithm indeed produces a solution that admits the same optimal rate after sufficient iterations. As a byproduct, we also establish the concentration inequality for estimat- ing population mean when there exists only the second moment. We compare RA-Lasso with other regularized robust estimators based on quantile regression and LAD regression. Extensive simulation studies demonstrate the satisfactory finite-sample performance of RA-Lasso
    • …
    corecore