24,748 research outputs found
Mining Pure, Strict Epistatic Interactions from High-Dimensional Datasets: Ameliorating the Curse of Dimensionality
Background: The interaction between loci to affect phenotype is called epistasis. It is strict epistasis if no proper subset of the interacting loci exhibits a marginal effect. For many diseases, it is likely that unknown epistatic interactions affect disease susceptibility. A difficulty when mining epistatic interactions from high-dimensional datasets concerns the curse of dimensionality. There are too many combinations of SNPs to perform an exhaustive search. A method that could locate strict epistasis without an exhaustive search can be considered the brass ring of methods for analyzing high-dimensional datasets. Methodology/Findings: A SNP pattern is a Bayesian network representing SNP-disease relationships. The Bayesian score for a SNP pattern is the probability of the data given the pattern, and has been used to learn SNP patterns. We identified a bound for the score of a SNP pattern. The bound provides an upper limit on the Bayesian score of any pattern that could be obtained by expanding a given pattern. We felt that the bound might enable the data to say something about the promise of expanding a 1-SNP pattern even when there are no marginal effects. We tested the bound using simulated datasets and semi-synthetic high-dimensional datasets obtained from GWAS datasets. We found that the bound was able to dramatically reduce the search time for strict epistasis. Using an Alzheimer's dataset, we showed that it is possible to discover an interaction involving the APOE gene based on its score because of its large marginal effect, but that the bound is most effective at discovering interactions without marginal effects. Conclusions/Significance: We conclude that the bound appears to ameliorate the curse of dimensionality in high-dimensional datasets. This is a very consequential result and could be pivotal in our efforts to reveal the dark matter of genetic disease risk from high-dimensional datasets. © 2012 Jiang, Neapolitan
Design Quality of Security Service Negotiation Protocol
With future network equipment the security service becomes a critical and serious problem. Especially in the network, users do not want to expose their message to others or to be forged by others. They make extensive use of cryptography and integrity algorithms to achieve security. The sender can achieve the high quality of security service (high security level), only if the receivers and routers along path to receivers can support or satisfy the quality of security service requested by the sender. Therefore, this paper proposes a protocol to provide the needed mechanism for quality of security service, to dynamically negotiate the quality of security service among the senders and receivers of multicasts in the network. It provides different quality of security service resolutions to different receiver nodes with different security service needs and includes six different negotiation styles
SRU-NET: SOBEL RESIDUAL U-NET FOR IMAGE MANIPULATION DETECTION
Recently, most successful image manipulation detection methods have been based on convolutional neural networks (CNNs). Nevertheless, Existing CNN methods have limited abilities. CNN-based detection networks tend to extract signal features strongly related to content. However, image manipulation detection tends to extract weak signal features that are weakly related to content. To address this issue, We propose a novel Sobel residual neural network with adaptive central difference convolution, an extension of the classical U-Net architecture, for image manipulation detection. Adaptive central differential convolution can capture the essential attributes of an image by gathering intensity and gradient information. Sobel residual gradient block can capture forgery edge discriminative details. Extensive experimental results show that our method can significantly improve the accuracy of localising the forged region compared with the state-of-the-art methods
- …