107 research outputs found

    Surge-varying LOS based path following of under actuated surface vehicles

    Get PDF
    1048-1055Subject to harsh ocean environment, a novel path following control scheme with accurate guidance and high anti-disturbance ability for under actuated surface vehicles is proposed. The innovative work is as follow: (1) Based on the traditional line-of-sight (LOS), a surge-varying LOS (SVLOS) guidance law is designed to achieve double guidance of speed and heading, which enhances the flexibility and precision of the previous LOS; (2) Unknown disturbances are exactly estimated by an exact disturbance observer (EDO), wherein the limitations of bounded and asymptotic observations can be avoided; (3) The EDO-based robust tracking controllers enable accurate disturbance compensation and guided signal tracking in harsh ocean environment. Rigorous theoretical analysis and significant simulation comparison have been done to demonstrate superiority of the EDO-SVLOS scheme

    Modeling the High-Pressure Solid and Liquid Phases of Tin from Deep Potentials with ab initio Accuracy

    Full text link
    Constructing an accurate atomistic model for the high-pressure phases of tin (Sn) is challenging because properties of Sn are sensitive to pressures. We develop machine-learning-based deep potentials for Sn with pressures ranging from 0 to 50 GPa and temperatures ranging from 0 to 2000 K. In particular, we find the deep potential, which is obtained by training the ab initio data from density functional theory calculations with the state-of-the-art SCAN exchange-correlation functional, is suitable to characterize high-pressure phases of Sn. We systematically validate several structural and elastic properties of the {\alpha} (diamond structure), {\beta}, bct, and bcc structures of Sn, as well as the structural and dynamic properties of liquid Sn. The thermodynamics integration method is further utilized to compute the free energies of the {\alpha}, {\beta}, bct, and liquid phases, from which the deep potential successfully predicts the phase diagram of Sn including the existence of the triple-point that qualitatively agrees with the experiment

    Extensive analysis of D7S486 in primary gastric cancer supports TESTIN as a candidate tumor suppressor gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High frequency of loss of heterozygosity (LOH) was found at D7S486 in primary gastric cancer (GC). And we found a high frequency of LOH region on 7q31 in primary GC from China, and identified D7S486 to be the most frequent LOH locus. This study was aimed to determine what genes were affected by the LOH and served as tumor suppressor genes (TSGs) in this region. Here, a high-throughput single nucleotide polymorphisms (SNPs) microarray fabricated in-house was used to analyze the LOH status around D7S486 on 7q31 in 75 patients with primary GC. Western blot, immunohistochemistry, and RT-PCR were used to assess the protein and mRNA expression of TESTIN (TES) in 50 and 140 primary GC samples, respectively. MTS assay was used to investigate the effect of TES overexpression on the proliferation of GC cell lines. Mutation and methylation analysis were performed to explore possible mechanisms of TES inactivation in GC.</p> <p>Results</p> <p>LOH analysis discovered five candidate genes (<it>ST7</it>, <it>FOXP2</it>, <it>MDFIC</it>, <it>TES </it>and <it>CAV1</it>) whose frequencies of LOH were higher than 30%. However, only <it>TES </it>showed the potential to be a TSG associated with GC. Among 140 pairs of GC samples, decreased <it>TES </it>mRNA level was found in 96 (68.6%) tumor tissues when compared with matched non-tumor tissues (<it>p </it>< 0.001). Also, reduced TES protein level was detected in 36 (72.0%) of all 50 tumor tissues by Western blot (<it>p </it>= 0.001). In addition, immunohistochemical staining result was in agreement with that of RT-PCR and Western blot. Down regulation of TES was shown to be correlated with tumor differentiation (<it>p </it>= 0.035) and prognosis (<it>p </it>= 0.035, log-rank test). Its overexpression inhibited the growth of three GC cell lines. Hypermethylation of <it>TES </it>promoter was a frequent event in primary GC and GC cell lines. However, no specific gene mutation was observed in the coding region of the <it>TES </it>gene.</p> <p>Conclusions</p> <p>Collectively, all results support the role of <it>TES </it>as a TSG in gastric carcinogenesis and that <it>TES </it>is inactivated primarily by LOH and CpG island methylation.</p

    Intrinsic Defects in LiMn2_{2}O4_{4}: First-Principles Calculations

    Get PDF
    Spinel LiMn2_{2}O4_{4} has attracted wide attention due to its advantages of a high-voltage plateau, good capacity, environmental friendliness, and low cost. Due to different experimental synthesis methods and conditions, there are many intrinsic point defects in LiMn2_{2}O4_{4}. By means of first-principles calculations based on a reasonable magnetic configuration, we studied the formation energies, local structures, and charge compensation mechanism of intrinsic point defects in LiMn2_{2}O4_{4}. The formation energies of defects under the assumed O-rich equilibrium conditions were examined. It was found that O, Li, and Mn vacancies, Mn and Li antisites, and Li interstitial could appear in the lattice at some equilibrium conditions, but Mn interstitial is hard to form. The charge was compensated mainly by adjusting the oxidation state of Mn around the defect, except for the defects at the 8a Wyckoff site. The binding energies between point defects were calculated to shed light on the clustering of point defects. Furthermore, the diffusion of Li ions around the defects was discussed. Cation antisites led to a decrease of the Li diffusion barrier but O vacancy caused an increase of the barrier. This study provides theoretical support for understanding point defects in spinel LiMn2_{2}O4_{4}

    Analysis of depression status and influencing factors in middle-aged and elderly patients with chronic diseases

    Get PDF
    ObjectivesTo explore prevalence of depression and its influencing factors in middle-aged and elderly patients with chronic diseases.MethodData were extracted from the 2018 China Health and Retirement Tracking Survey (CHARLS) for 6,704 middle-aged and elderly patients ≥45 years with chronic diseases. The influencing variables were selected based on LASSO-logistic regression model, and a nomogram was further drawn to visualize regression results.ResultsComorbidity between chronic diseases and depression symptoms were detected in 3058 individuals (45.6%). Female, rural, lower education, poor, insomnia, multiple chronic disease, and functional impairment were associated with a higher proportion of depression. Meanwhile, family interaction, intergenerational financial support, social activity intensity, and satisfaction with life can protect against depression.ConclusionDepressive symptoms are common in Chinese older adults with chronic diseases. They need regular assessment and intervention, especially those with multiple diseases, female, rural, alone, impaired, poor sleep, or poor economy. These high-risk elders also need family, medical, and social support and care

    A Spin-dependent Machine Learning Framework for Transition Metal Oxide Battery Cathode Materials

    Full text link
    Owing to the trade-off between the accuracy and efficiency, machine-learning-potentials (MLPs) have been widely applied in the battery materials science, enabling atomic-level dynamics description for various critical processes. However, the challenge arises when dealing with complex transition metal (TM) oxide cathode materials, as multiple possibilities of d-orbital electrons localization often lead to convergence to different spin states (or equivalently local minimums with respect to the spin configurations) after ab initio self-consistent-field calculations, which causes a significant obstacle for training MLPs of cathode materials. In this work, we introduce a solution by incorporating an additional feature - atomic spins - into the descriptor, based on the pristine deep potential (DP) model, to address the above issue by distinguishing different spin states of TM ions. We demonstrate that our proposed scheme provides accurate descriptions for the potential energies of a variety of representative cathode materials, including the traditional Lix_xTMO2_2 (TM=Ni, Co, Mn, xx=0.5 and 1.0), Li-Ni anti-sites in Lix_xNiO2_2 (xx=0.5 and 1.0), cobalt-free high-nickel Lix_xNi1.5_{1.5}Mn0.5_{0.5}O4_4 (xx=1.5 and 0.5), and even a ternary cathode material Lix_xNi1/3_{1/3}Co1/3_{1/3}Mn1/3_{1/3}O2_2 (xx=1.0 and 0.67). We highlight that our approach allows the utilization of all ab initio results as a training dataset, regardless of the system being in a spin ground state or not. Overall, our proposed approach paves the way for efficiently training MLPs for complex TM oxide cathode materials

    A modified ‘skeleton/skin’ strategy for designing CoNiP nanosheets arrayed on graphene foam for on/off switching of NaBH4_{4} hydrolysis

    Get PDF
    CoNiP nanosheet array catalysts were successfully prepared on three-dimensional (3D) graphene foam using hydrothermal synthesis. These catalysts were prepared using 3D Ni–graphene foam (Ni/GF), comprising nickel foam as the ‘skeleton’ and reduced graphene oxide as the ‘skin’. This unique continuous modified ‘skeleton/skin’ structure ensure that the catalysts had a large surface area, excellent conductivity, and sufficient surface functional groups, which promoted in situ CoNiP growth, while also optimizing the hydrolysis of sodium borohydride. The nanosheet arrays were fully characterized and showed excellent catalytic performance, as supported by density functional theory calculations. The hydrogen generation rate and activation energy are 6681.34 mL min1_{−1} g1_{−1} and 31.2 kJ mol1_{−1}, respectively, outperforming most reported cobalt-based catalysts and other precious metal catalysts. Furthermore, the stability of mockstrawberry-like CoNiP catalyst was investigated, with 74.9% of the initial hydrogen generation rate remaining after 15 cycles. The catalytic properties, durability, and stability of the catalyst were better than those of other catalysts reported previously
    corecore