121 research outputs found

    Phonemic Adversarial Attack against Audio Recognition in Real World

    Full text link
    Recently, adversarial attacks for audio recognition have attracted much attention. However, most of the existing studies mainly rely on the coarse-grain audio features at the instance level to generate adversarial noises, which leads to expensive generation time costs and weak universal attacking ability. Motivated by the observations that all audio speech consists of fundamental phonemes, this paper proposes a phonemic adversarial tack (PAT) paradigm, which attacks the fine-grain audio features at the phoneme level commonly shared across audio instances, to generate phonemic adversarial noises, enjoying the more general attacking ability with fast generation speed. Specifically, for accelerating the generation, a phoneme density balanced sampling strategy is introduced to sample quantity less but phonemic features abundant audio instances as the training data via estimating the phoneme density, which substantially alleviates the heavy dependency on the large training dataset. Moreover, for promoting universal attacking ability, the phonemic noise is optimized in an asynchronous way with a sliding window, which enhances the phoneme diversity and thus well captures the critical fundamental phonemic patterns. By conducting extensive experiments, we comprehensively investigate the proposed PAT framework and demonstrate that it outperforms the SOTA baselines by large margins (i.e., at least 11X speed up and 78% attacking ability improvement)

    Robust Unstructured Knowledge Access in Conversational Dialogue with ASR Errors

    Full text link
    Performance of spoken language understanding (SLU) can be degraded with automatic speech recognition (ASR) errors. We propose a novel approach to improve SLU robustness by randomly corrupting clean training text with an ASR error simulator, followed by self-correcting the errors and minimizing the target classification loss in a joint manner. In the proposed error simulator, we leverage confusion networks generated from an ASR decoder without human transcriptions to generate a variety of error patterns for model training. We evaluate our approach on the DSTC10 challenge targeted for knowledge-grounded task-oriented conversational dialogues with ASR errors. Experimental results show the effectiveness of our proposed approach, boosting the knowledge-seeking turn detection (KTD) F1 significantly from 0.9433 to 0.9904. Knowledge cluster classification is boosted from 0.7924 to 0.9333 in Recall@1. After knowledge document re-ranking, our approach shows significant improvement in all knowledge selection metrics, from 0.7358 to 0.7806 in Recall@1, from 0.8301 to 0.9333 in Recall@5, and from 0.7798 to 0.8460 in MRR@5 on the test set. In the recent DSTC10 evaluation, our approach demonstrates significant improvement in knowledge selection, boosting Recall@1 from 0.495 to 0.7144 compared to the official baseline. Our source code is released in GitHub https://github.com/yctam/dstc10_track2_task2.git.Comment: 7 pages, 2 figures. Accepted at ICASSP 202

    Adversarial Examples in the Physical World: A Survey

    Full text link
    Deep neural networks (DNNs) have demonstrated high vulnerability to adversarial examples. Besides the attacks in the digital world, the practical implications of adversarial examples in the physical world present significant challenges and safety concerns. However, current research on physical adversarial examples (PAEs) lacks a comprehensive understanding of their unique characteristics, leading to limited significance and understanding. In this paper, we address this gap by thoroughly examining the characteristics of PAEs within a practical workflow encompassing training, manufacturing, and re-sampling processes. By analyzing the links between physical adversarial attacks, we identify manufacturing and re-sampling as the primary sources of distinct attributes and particularities in PAEs. Leveraging this knowledge, we develop a comprehensive analysis and classification framework for PAEs based on their specific characteristics, covering over 100 studies on physical-world adversarial examples. Furthermore, we investigate defense strategies against PAEs and identify open challenges and opportunities for future research. We aim to provide a fresh, thorough, and systematic understanding of PAEs, thereby promoting the development of robust adversarial learning and its application in open-world scenarios.Comment: Adversarial examples, physical-world scenarios, attacks and defense

    Robustness-enhanced Uplift Modeling with Adversarial Feature Desensitization

    Full text link
    Uplift modeling has shown very promising results in online marketing. However, most existing works are prone to the robustness challenge in some practical applications. In this paper, we first present a possible explanation for the above phenomenon. We verify that there is a feature sensitivity problem in online marketing using different real-world datasets, where the perturbation of some key features will seriously affect the performance of the uplift model and even cause the opposite trend. To solve the above problem, we propose a novel robustness-enhanced uplift modeling framework with adversarial feature desensitization (RUAD). Specifically, our RUAD can more effectively alleviate the feature sensitivity of the uplift model through two customized modules, including a feature selection module with joint multi-label modeling to identify a key subset from the input features and an adversarial feature desensitization module using adversarial training and soft interpolation operations to enhance the robustness of the model against this selected subset of features. Finally, we conduct extensive experiments on a public dataset and a real product dataset to verify the effectiveness of our RUAD in online marketing. In addition, we also demonstrate the robustness of our RUAD to the feature sensitivity, as well as the compatibility with different uplift models

    MIR2: Towards Provably Robust Multi-Agent Reinforcement Learning by Mutual Information Regularization

    Full text link
    Robust multi-agent reinforcement learning (MARL) necessitates resilience to uncertain or worst-case actions by unknown allies. Existing max-min optimization techniques in robust MARL seek to enhance resilience by training agents against worst-case adversaries, but this becomes intractable as the number of agents grows, leading to exponentially increasing worst-case scenarios. Attempts to simplify this complexity often yield overly pessimistic policies, inadequate robustness across scenarios and high computational demands. Unlike these approaches, humans naturally learn adaptive and resilient behaviors without the necessity of preparing for every conceivable worst-case scenario. Motivated by this, we propose MIR2, which trains policy in routine scenarios and minimize Mutual Information as Robust Regularization. Theoretically, we frame robustness as an inference problem and prove that minimizing mutual information between histories and actions implicitly maximizes a lower bound on robustness under certain assumptions. Further analysis reveals that our proposed approach prevents agents from overreacting to others through an information bottleneck and aligns the policy with a robust action prior. Empirically, our MIR2 displays even greater resilience against worst-case adversaries than max-min optimization in StarCraft II, Multi-agent Mujoco and rendezvous. Our superiority is consistent when deployed in challenging real-world robot swarm control scenario. See code and demo videos in Supplementary Materials

    Byzantine Robust Cooperative Multi-Agent Reinforcement Learning as a Bayesian Game

    Full text link
    In this study, we explore the robustness of cooperative multi-agent reinforcement learning (c-MARL) against Byzantine failures, where any agent can enact arbitrary, worst-case actions due to malfunction or adversarial attack. To address the uncertainty that any agent can be adversarial, we propose a Bayesian Adversarial Robust Dec-POMDP (BARDec-POMDP) framework, which views Byzantine adversaries as nature-dictated types, represented by a separate transition. This allows agents to learn policies grounded on their posterior beliefs about the type of other agents, fostering collaboration with identified allies and minimizing vulnerability to adversarial manipulation. We define the optimal solution to the BARDec-POMDP as an ex post robust Bayesian Markov perfect equilibrium, which we proof to exist and weakly dominates the equilibrium of previous robust MARL approaches. To realize this equilibrium, we put forward a two-timescale actor-critic algorithm with almost sure convergence under specific conditions. Experimentation on matrix games, level-based foraging and StarCraft II indicate that, even under worst-case perturbations, our method successfully acquires intricate micromanagement skills and adaptively aligns with allies, demonstrating resilience against non-oblivious adversaries, random allies, observation-based attacks, and transfer-based attacks
    corecore