26 research outputs found

    Fabrication and Properties of Carbon- Encapsulated Cobalt Nanoparticles over NaCl by CVD

    Get PDF
    Carbon-encapsulated cobalt (Co@C) nanoparticles, with a tunable structure, were synthesized by chemical vapor deposition using Co nanoparticles as the catalyst and supported on a water-soluble substrate (sodium chloride), which was easily removed by washing and centrifugation. The influences of growth temperature and time on the structure and magnetic properties of the Co@C nanoparticles were systematically investigated. For different growth temperatures, the magnetic Co nanoparticles were encapsulated by different types of carbon layers, including amorphous carbon layers, graphitic layers, and carbon nanofibers. This inferred a close relationship between the structure of the carbon-encapsulated metal nanoparticles and the growth temperature. At a fixed growth temperature of 400 °C, prolonged growth time caused an increase in thickness of the carbon layers. The magnetic characterization indicated that the magnetic properties of the obtained Co@C nanoparticles depend not only on the graphitization but also on the thickness of the encapsulated carbon layer, which were easily controlled by the growth temperatures and times. Optimization of the synthesis process allowed achieving relatively high coercivity of the synthesized Co@C nanoparticles and enhancement of its ferromagnetic properties, which make this system promising as a magnetic material, particularly for high-density magnetic recording applications

    Preparation and Characterization of Integrated Condylar Biomimetic Scaffolds: A Pilot Study

    No full text

    Spindle-like porous N-doped TiO 2

    No full text

    Effect of micropore/microsphere topography and a silicon-incorporating modified titanium plate surface on the adhesion and osteogenic differentiation of BMSCs

    No full text
    AbstractGood biological properties for titanium implants will shorten the treatment cycle and improve patient comfort, which are also the main goals of dentistry and orthopaedics. At present, the biological properties of titanium implants are mainly enhanced in two aspects: their surface chemistry and surface morphology. In this study, a surface modification strategy combining bioactive trace elements with surface micromorphology modification was used to enhance the biological properties of pure titanium. A new coating incorporating silicon micropore/microsphere topography was prepared on a titanium plate by micro-arc oxidation (MAO) technology. The properties of the coating and its effects on the adhesion and osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) were further analyzed. The experimental results show that a coating doped with amorphous silicon with micropore/microsphere topography was incorporated onto the titanium surface and the surface roughness in the treated groups was obviously higher than that in the Ti group. In vitro, the presence of a silicon-incorporating coating with a micropore/microsphere topography on the titanium surface significantly enhanced the initial adhesion, proliferation and osteogenic differentiation of BMSCs. These results indicate that the silicon-incorporating coating with micropore/microsphere topography has potential applications in dentistry and orthopaedics

    Synthesis and Characterization of Flower-like Carbon-encapsulated Fe-C Nanoparticles for Application as Adsorbing Material

    No full text
    Carbon-encapsulated Fe-C (Fe-C@C) nanoparticles with a divergently flower-like morphology were successfully synthesized for application as an adsorbing material by using freeze-drying and chemical vapor deposition (CVD) methods. The Fe metallic source was first loaded onto a sodium chloride (NaCl) supporter via freeze-drying to obtain the Fe/NaCl composite powder. Then, Fe-C@C nanoparticles were synthesized in the temperature range of 300–450 °C via CVD of acetylene in the Fe/NaCl composite powder using Fe nanoparticles as catalysts and NaCl as supporters. Because the NaCl supporter is water-soluble, the synthesized Fe-C@C nanoparticles were easy to purify, and a high purity was obtained by simple washing and centrifugation. The optimal Fe-C@C nanoparticles, synthesized at 400 °C, possessed a unique divergently flower-like structure and a high specific surface area of 169.4 m2/g that can provide more adsorption sites for contaminants. Adsorption experiments showed that the flower-like Fe-C@C adsorbent exhibited high adsorption capacity (90.14 mg/g) and fast removal of methylene blue (MB). Moreover, the magnetic properties of the nanoparticles, with saturation magnetization of 36.544 emu/g, facilitated their magnetic separation from wastewater. Therefore, the novel flower-like Fe-C@C nanoparticles with integrated adsorptive and magnetic properties have the potential to be an effective adsorbent in dye wastewater treatment

    Biocompatibility of the micro-patterned NiTi surface produced by femtosecond laser

    No full text
    Biocompatibility of the micro-patterned NiTi surface produced by femtosecond laser (FSL) was studied in this work. The surface characteristics of the laser treated NiTi alloys were investigated by scanning electron microscopy (SEM), atom force microscopy (AFM), X-ray diffractometry (XRD) and X-ray photoelectron spectrum (XPS). The biocompatibility was evaluated by in vitro cell culture test. The results showed that, grooves, ripples, which covered by nanoparticles were formed on the sample surfaces, and the Ni/Ti ratio on the alloy surface increased with increasing laser energy. The crystal structure was not changed by laser treatment. However, the cell culture test proved that the micro-patterns induced by FSL were beneficial to improve the biocompatibility of NiTi alloys: the growth of osteoblasts oriented along the grooves, a large amount of synapses and filopodias were formed due to the ripples, holes and nanoparticles on the alloy surface, and the proliferation rate and alkaline phosphatase (ALP) content of cells were increased after FSL treatment. However, due to the toxicity of Ni ions on cell growth, the NiTi alloy surface should not be treated by laser fluence of more than 3.82 J/cm(2) to obtain the ideal biocompatibility. (C) 2012 Elsevier B. V. All rights reserved

    Graphene Oxide Hybridized nHAC/PLGA Scaffolds Facilitate the Proliferation of MC3T3-E1 Cells

    No full text
    Abstract Biodegradable porous biomaterial scaffolds play a critical role in bone regeneration. In this study, the porous nano-hydroxyapatite/collagen/poly(lactic-co-glycolic acid)/graphene oxide (nHAC/PLGA/GO) composite scaffolds containing different amount of GO were fabricated by freeze-drying method. The results show that the synthesized scaffolds possess a three-dimensional porous structure. GO slightly improves the hydrophilicity of the scaffolds and reinforces their mechanical strength. Young’s modulus of the 1.5 wt% GO incorporated scaffold is greatly increased compared to the control sample. The in vitro experiments show that the nHAC/PLGA/GO (1.5 wt%) scaffolds significantly cell adhesion and proliferation of osteoblast cells (MC3T3-E1). This present study indicates that the nHAC/PLGA/GO scaffolds have excellent cytocompatibility and bone regeneration ability, thus it has high potential to be used as scaffolds in the field of bone tissue engineering

    In situ preparation of nano cone-like structures of rutile titanium oxides on titanium implants by one-step femtosecond laser irradiation for enhanced mechanical properties and biocompatibility

    No full text
    Titanium oxides (TiO2) nanostructures coating is helpful in improving the utilization of titanium in many areas due to its multifunctional properties. This study introduces a novel approach for the in-situ fabrication of nano cones-like structures of rutile titanium oxides (NCS–TiO2) on the surface of titanium utilizing femtosecond laser technology. Rutile titanium oxides were synthesized with a height of around 80 nm and a diameter of 100 nm, forming NCS that imparts higher hardness, wear resistance, and biocompatibility. Molecular dynamic simulation provides valuable insights into the three-stage formation process of NCS-TiO2. Molecular dynamic simulation revealed that the growth of rutile titanium oxides and the formation of nano cones-like structures are attributed to the interplay between femtosecond laser ablation and the accumulation of thermal energy. The proposed method offers a versatile and straightforward approach for creating functional surfaces on metal substrates, enabling broad applicability and ease of implementation, specifically in titanium and its alloys. This advancement holds great potential for expanding the scope of titanium-based materials and their applications, paving the way for improved mechanical properties and biocompatibility in diverse fields

    Antibacterial Vancomycin@ZIF-8 Loaded PVA Nanofiber Membrane for Infected Bone Repair

    No full text
    Bone substitutes with strong antibacterial properties and bone regeneration effects have an inherent potential in the treatment of severe bone tissue infections, such as osteomyelitis. In this study, vancomycin (Van) was loaded into zeolitic imidazolate framework-8 (ZIF-8) to prepare composite particles, which is abbreviated as V@Z. As a pH-responsive particle, ZIF-8 can be cleaved in the weak acid environment caused by bacterial infection to realize the effective release of drugs. Then, V@Z was loaded into polyvinyl alcohol (PVA) fiber by electrospinning to prepare PVA/V@Z composite bone filler. The drug-loading rate of V@Z was about 6.735%. The membranes exhibited super hydrophilicity, water absorption and pH-controlled Van release behavior. The properties of anti E. coli and S. aureus were studied under the pH conditions of normal physiological tissues and infected tissues (pH 7.4 and pH 6.5, respectively). It was found that the material had good surface antibacterial adhesion and antibacterial property. The PVA/V@Z membrane had the more prominent bacteria-killing effect compared with the same amount of single antibacterial agent containing membrane such as ZIF-8 or Van loaded PVA, and the antibacterial rate was up to 99%. The electrospun membrane had good biocompatibility and can promote MC3T3-E1 cell spreading on it
    corecore