903 research outputs found

    Joint Bayesian Gaussian discriminant analysis for speaker verification

    Full text link
    State-of-the-art i-vector based speaker verification relies on variants of Probabilistic Linear Discriminant Analysis (PLDA) for discriminant analysis. We are mainly motivated by the recent work of the joint Bayesian (JB) method, which is originally proposed for discriminant analysis in face verification. We apply JB to speaker verification and make three contributions beyond the original JB. 1) In contrast to the EM iterations with approximated statistics in the original JB, the EM iterations with exact statistics are employed and give better performance. 2) We propose to do simultaneous diagonalization (SD) of the within-class and between-class covariance matrices to achieve efficient testing, which has broader application scope than the SVD-based efficient testing method in the original JB. 3) We scrutinize similarities and differences between various Gaussian PLDAs and JB, complementing the previous analysis of comparing JB only with Prince-Elder PLDA. Extensive experiments are conducted on NIST SRE10 core condition 5, empirically validating the superiority of JB with faster convergence rate and 9-13% EER reduction compared with state-of-the-art PLDA.Comment: accepted by ICASSP201

    G2-MonoDepth: A General Framework of Generalized Depth Inference from Monocular RGB+X Data

    Full text link
    Monocular depth inference is a fundamental problem for scene perception of robots. Specific robots may be equipped with a camera plus an optional depth sensor of any type and located in various scenes of different scales, whereas recent advances derived multiple individual sub-tasks. It leads to additional burdens to fine-tune models for specific robots and thereby high-cost customization in large-scale industrialization. This paper investigates a unified task of monocular depth inference, which infers high-quality depth maps from all kinds of input raw data from various robots in unseen scenes. A basic benchmark G2-MonoDepth is developed for this task, which comprises four components: (a) a unified data representation RGB+X to accommodate RGB plus raw depth with diverse scene scale/semantics, depth sparsity ([0%, 100%]) and errors (holes/noises/blurs), (b) a novel unified loss to adapt to diverse depth sparsity/errors of input raw data and diverse scales of output scenes, (c) an improved network to well propagate diverse scene scales from input to output, and (d) a data augmentation pipeline to simulate all types of real artifacts in raw depth maps for training. G2-MonoDepth is applied in three sub-tasks including depth estimation, depth completion with different sparsity, and depth enhancement in unseen scenes, and it always outperforms SOTA baselines on both real-world data and synthetic data.Comment: 18 pages, 16 figure

    An original model for multi-target learning of logical rules for knowledge graph reasoning

    Full text link
    Large-scale knowledge graphs provide structured representations of human knowledge. However, as it is impossible to collect all knowledge, knowledge graphs are usually incomplete. Reasoning based on existing facts paves a way to discover missing facts. In this paper, we study the problem of learning logical rules for reasoning on knowledge graphs for completing missing factual triplets. Learning logical rules equips a model with strong interpretability as well as the ability to generalize to similar tasks. We propose a model able to fully use training data which also considers multi-target scenarios. In addition, considering the deficiency in evaluating the performance of models and the quality of mined rules, we further propose two novel indicators to help with the problem. Experimental results empirically demonstrate that our model outperforms state-of-the-art methods on five benchmark datasets. The results also prove the effectiveness of the indicators
    • …
    corecore