276 research outputs found

    The effect of calcium nitrate on the hydration of calcium aluminate cement at different curing temperatures

    Get PDF
    Phase conversion in calcium aluminate cements (CAC) induces significant volumetric instability; it would result in an increase in porosity and decrease in strength in CAC. In this study, calcium nitrate (CN) as a phase conversion inhibitor, the effect of CN on the hydration of CAC at different curing temperatures was studied. Xray diffraction, thermal analysis, SEM, isothermal calorimetry and the compressive strength were conducted on the CAC dosages of 0%, 5%, 10% and 15%CN cured at 20�, 30�, 40� and 50�. The results show CN can retard CAC hydration, alter the characters of the hydrates of CAC systems and avoid the conversion process. With increasing dosage of CN and curing temperature, the hydration products formed is different.in CAC systems with CN, NO3-AFm and NO3-AFt are more preferred than CAH10 and C2AH8 and are more thermostable than those typically hydrates. In the presence of CN, The phase conversion to a large extent can be avoided and the compressive strength is significantly improved. The CN dosage has a very important effect on CAC systems with CN. In this study, the optimum dosage for CN is 10 percent. This study may provide a new insight into avoiding the unstable phase conversion in calcium aluminate cements

    Submarine groundwater discharge in Dongshan Bay, China: A master regulator of nutrients in spring and potential national significance of small bays

    Get PDF
    Despite over 90% of China’s coastal bays have an area less than 500 km2, the geochemical effects of SGD on those ecosystems are ambiguous. Based on mapping and time-series observations of Ra isotopes and nutrients, a case study of small bays (<500 km2), we revealed that submarine groundwater discharge (SGD) predominately regulated the distribution of nutrients and fueled algal growth in Dongshan Bay, China. On the bay-wide scale, the SGD rate was estimated to be 0.048 ± 0.022 m day−1 and contributed over 95% of the nutrients. At the time-series site where the bay-wide highest Ra activities in the bottom water marked an SGD hotspot with an average rate an order of magnitude greater, the maximum chlorophyll concentration co-occurred, suggesting that SGD may support the algal bloom. The ever-most significant positive correlations between 228Ra and nutrients throughout the water column (P< 0.01, R2 > 0.90 except for soluble reactive phosphorus in the surface) suggested the predominance of SGD in controlling nutrient distribution in the bay. Extrapolated to a national scale, the SGD-carried dissolved inorganic nitrogen flux in small bays was twice as much as those in large bays (>2,000 km2). Thus, the SGD-carried nutrients in small bays merit immediate attention in environmental monitoring and management

    Beneficial synergy of adsorption-intercalation-conversion mechanisms in Nb<sub>2</sub>O<sub>5</sub>@nitrogen-doped carbon frameworks for promoted removal of metal ionsviahybrid capacitive deionization

    Get PDF
    Capacitive deionization (CDI) is an emerging water purification technology, but the ion adsorption capacity of traditional carbon-based CDI electrodes is still unsatisfactory. Herein, a novel faradaic electrode by anchoring Nb2O5nanoparticles on nitrogen-doped carbon frameworks as anodes and activated carbon (AC) as cathodes in a hybrid capacitive deionization (HCDI) system was originally developed to capture Na+ionsviaadsorption-intercalation-conversion mechanisms. The synergistic effects of the nanostructure and carbon coating were beneficial to enhancing electrical conductivity and offering fast Na+ion diffusion pathways. Impressively, the HCDI system demonstrated an excellent ion adsorption capacity of 35.4 mg g−1in a 500 mg L−1NaCl solution at 1.2 V as well as stable regeneration ability.In situRaman andex situXPS measurements unraveled that the mechanism of ion removal from water was the reversible redox reaction of Nb2O5. The new overall understanding of the synergistic effects opens opportunities for the design of HCDI systems for efficient removal of metal ions from saline water.</p

    Identification and Function Prediction of Novel MicroRNAs in Laoshan Dairy Goats

    Get PDF
    MicroRNAs are a class of endogenous small RNAs that play important roles in post-transcriptional gene regulation by directing degradation of mRNAs or facilitating repression of target gene translation. In this study, three small RNA cDNA libraries from the mammary gland tissues of Laoshan dairy goats (Capra hircus) were constructed and sequenced, individually. Through Solexa high-throughput sequencing and bioinformatics analysis, we obtained 50 presumptive novel miRNAs candidates, and 55,448 putative target genes were predicted. GO annotations and KEGG pathway analyses showed the majority of target genes were involved in various biological processes and metabolic pathways. Our results discovered more information about the regulation network between miRNAs and mRNAs and paved a foundation for the molecular genetics of mammary gland development in goats
    corecore