13 research outputs found

    What is the best strategy for craniovertebral junction (CVJ) anomalies associated with posterior fossa arachnoid cyst and hydrocephalus: An extremely rare case report

    No full text
    Occurrence of craniovertebral junction (CVJ) anomalies in association with posterior fossa arachnoid cyst and hydrocephalus is extremely rare; no such prior cases have been documented in the literature. There are no definitive guidelines for the management of such lesions. Management strategy should account for high intracranial pressure, compression of the brain stem and cervical cord, as well as for the craniospinal instability. We report the first such case and describe the management procedure. Staged surgical intervention was carried out. The patient developed serious complications after the first staged operation, although the final outcome was good. The authors emphasize the importance of fixation and decompression for patients with such complex lesions. Our experience may provide a treatment strategy for similar cases and even for all craniovertebral junction (CVJ) anomalies associated with posterior fossa lesions

    Accuracy of pedicle screw placement in the thoracic and lumbosacral spines using O-arm-based navigation versus conventional freehand technique

    No full text
    Abstract Background The accuracy and safety of pedicle screw insertion was markedly improved with the introduction of intraoperative three-dimensional navigation system during the last decade. This study aimed to evaluate the accuracy of pedicle screw placement using O-arm-based navigation system versus conventional freehand technique. Methods We reviewed the accuracy of 341 thoracic (n = 173) and lumbosacral (n = 168) pedicle screws placed in 60 consecutive patients using either O-arm-based navigation or freehand technique in the Department of Neurosurgery of Beijing Tsinghua Changgung Hospital between January 2015 and June 2018. Patient-specific characteristics, treatment-related characteristics, and screw-specific accuracy were analyzed. The accuracy of pedicle screw placement was measured by Gertzbein-Robbins scale and screw grades A and B were clinically acceptable. Results One hundred ninety-one screws were inserted in the O-arm-based navigation group and 150 in the freehand group. One hundred eighty-three (95.81%) clinically acceptable screws were placed in the navigation group and 135 (90.00%) in the freehand group (p = 0.034). Twenty-three (6.74%) screw revisions were performed in the two groups (8 screws in the navigation group and 15 screws in the freehand group) and significant difference was observed in thoracic spine (p = 0.018), while no statistical significance was presented in lumbosacral spine (p > 0.05). Twenty-four (12.57%) screws in the navigation group and 24 (16.00%) in the freehand group violated the cortex (p > 0.05). Medial screw deviation was the most common problem in the two groups. Conclusion The O-arm-based navigation exhibits higher accuracy for pedicle screw insertion than the freehand insertion technique

    Automatic and Efficient Prediction of Hematoma Expansion in Patients with Hypertensive Intracerebral Hemorrhage Using Deep Learning Based on CT Images

    No full text
    Patients with hypertensive intracerebral hemorrhage (ICH) have a high hematoma expansion (HE) incidence. Noninvasive prediction HE helps doctors take effective measures to prevent accidents. This study retrospectively analyzed 253 cases of hypertensive intraparenchymal hematoma. Baseline non-contrast-enhanced CT scans (NECTs) were collected at admission and compared with subsequent CTs to determine the presence of HE. An end-to-end deep learning method based on CT was proposed to automatically segment the hematoma region, region of interest (ROI) feature extraction, and HE prediction. A variety of algorithms were employed for comparison. U-Net with attention performs best in the task of segmenting hematomas, with the mean Intersection overUnion (mIoU) of 0.9025. ResNet-34 achieves the most robust generalization capability in HE prediction, with an area under the receiver operating characteristic curve (AUC) of 0.9267, an accuracy of 0.8827, and an F1 score of 0.8644. The proposed method is superior to other mainstream models, which will facilitate accurate, efficient, and automated HE prediction

    Engineering neuroregenerative microenvironment via aligned hydrogel-assisted magnetic stimulation for complete spinal cord injury repair

    No full text
    Utilizing biomaterials in tissue engineering has shown considerable promise for tissue regeneration, particularly through delivering multimodel cell-regulatory signals, including the material-related signals and extrinsic stimuli. In this research, we developed a magnetic-responsive aligned nanofiber fibrin hydrogel (MAFG), integrating the structured alignment of nanofibers and the pliability of fibrin hydrogel with an external magnetic field. This design aimed to enhance the regenerative response in spinal cord injury treatment. A medium-strength magnetic field, aligned with the spinal cord, was applied to aid motor function recovery in rats with spinal cord injuries. The use of MAFG in this context not only intensified the effect of the magnetic field but also encouraged the activation and differentiation of native neural stem cells. Furthermore, this method effectively steered macrophage polarization towards a beneficial M2 phenotype, addressing immune dysregulation at the injury site. The parallel application of magnetic field stimulation through MAFG in a spinal cord injury model contributed to the concurrent promotion of neurogenesis, angiogenesis, and immunomodulation, resulting in marked improvement in motor function in rats. This investigation underscores the therapeutic potential of magnetic field stimulation and highlights how aligning this stimulation with the spinal cord can significantly enhance the regenerative milieu at the injury site

    Risk factor analysis of progressive spinal deformity after resection of intramedullary spinal cord tumors in patients who underwent laminoplasty: A report of 105 consecutive cases

    No full text
    OBJECTIVE Laminoplasty has been used in recent years as an alternative approach to laminectomy for preventing spinal deformity after resection of intramedullary spinal cord tumors (IMSCTs). However, controversies exist with regard to its real role in maintaining postoperative spinal alignment. The purpose of this study was to examine the incidence of progressive spinal deformity in patients who underwent laminoplasty for resection of IMSCT and identify risk factors for progressive spinal deformity. METHODS Data from IMSCT patients who had undergone laminoplasty at Beijing Tsinghua Changgung Hospital between January 2014 and December 2016 were retrospectively reviewed. Univariate tests and multivariate logistic regression analysis were used to assess the statistical relationship between postoperative spinal deformity and radiographic, clinical, and surgical variables. RESULTS One hundred five patients (mean age 37.0 ± 14.5 years) met the criteria for inclusion in the study. Gross-total resection (\u3e 95%) was obtained in 79 cases (75.2%). Twenty-seven (25.7%) of the 105 patients were found to have spinal deformity preoperatively, and 10 (9.5%) new cases of postoperative progressive deformity were detected. The mean duration of follow-up was 27.6 months (SD 14.5 months, median 26.3 months, range 6.2–40.7 months). At last follow-up, the median functional scores of the patients who did develop progressive spinal deformity were worse than those of the patients who did not (modified McCormick Scale: 3 vs 2, and p = 0.04). In the univariate analysis, age (p = 0.01), preoperative spinal deformity (p \u3c 0.01), extent of tumor involvement (p \u3c 0.01), extent of abnormal tumor signal (p = 0.02), and extent of laminoplasty (p \u3c 0.01) were identified as factors associated with postoperative progressive spinal deformity. However, in subsequent multivariate logistic regression analysis, only age ≤ 25 years and preoperative spinal deformity emerged as independent risk factors (p \u3c 0.05), increasing the odds of postoperative progressive deformity by 4.1- and 12.4-fold, respectively (p \u3c 0.05). CONCLUSIONS Progressive spinal deformity was identified in 25.7% patients who had undergone laminoplasty for IMSCT resection and was related to decreased functional status. Younger age (≤ 25 years) and preoperative spinal deformity increased the risk of postoperative progressive spinal deformity. The risk of postoperative deformity warrants serious reconsideration of providing concurrent fusion during IMSCT resection or close follow-up after laminoplasty

    Multimodal-based machine learning strategy for accurate and non-invasive prediction of intramedullary glioma grade and mutation status of molecular markers: a retrospective study

    No full text
    Abstract Background Determining the grade and molecular marker status of intramedullary gliomas is important for assessing treatment outcomes and prognosis. Invasive biopsy for pathology usually carries a high risk of tissue damage, especially to the spinal cord, and there are currently no non-invasive strategies to identify the pathological type of intramedullary gliomas. Therefore, this study aimed to develop a non-invasive machine learning model to assist doctors in identifying the intramedullary glioma grade and mutation status of molecular markers. Methods A total of 461 patients from two institutions were included, and their sagittal (SAG) and transverse (TRA) T2-weighted magnetic resonance imaging scans and clinical data were acquired preoperatively. We employed a transformer-based deep learning model to automatically segment lesions in the SAG and TRA phases and extract their radiomics features. Different feature representations were fed into the proposed neural networks and compared with those of other mainstream models. Results The dice similarity coefficients of the Swin transformer in the SAG and TRA phases were 0.8697 and 0.8738, respectively. The results demonstrated that the best performance was obtained in our proposed neural networks based on multimodal fusion (SAG-TRA-clinical) features. In the external validation cohort, the areas under the receiver operating characteristic curve for graded (WHO I–II or WHO III–IV), alpha thalassemia/mental retardation syndrome X-linked (ATRX) status, and tumor protein p53 (P53) status prediction tasks were 0.8431, 0.7622, and 0.7954, respectively. Conclusions This study reports a novel machine learning strategy that, for the first time, is based on multimodal features to predict the ATRX and P53 mutation status and grades of intramedullary gliomas. The generalized application of these models could non-invasively provide more tumor-specific pathological information for determining the treatment and prognosis of intramedullary gliomas

    Precise management system for chronic intractable pain patients implanted with spinal cord stimulation based on a remote programming platform: study protocol for a randomized controlled trial (PreMaSy study)

    No full text
    Abstract Background Spinal cord stimulation (SCS) is a surgical technique used in patients with chronic intractable pain, and its effectiveness and safety have been validated by multiple studies. However, to maintain an optimal and steady long-term effect is still challenging. Here, we report a new management paradigm integrating smartphone application and remote programming. Chronic pain patients with SCS implants can monitor their pain status on the phone and change stimulation parameters accordingly. The PreMaSy study is a randomized controlled trial to evaluate the clinical effectiveness and safety of this precise management system. Methods Patients with chronic intractable pain will be screened for eligibility, and 82 participants are anticipated to be enrolled in this trial. After the electrode implantation, the stimulation effectiveness will be tested. Participants with a reduction of more than 50% in the visual analog scale (VAS) will receive implantation of an implantable pulse generator and randomized (1:1) into the experimental group or control group. All participants will be asked to take online follow-ups and complete assessments using a smartphone application. Daily pain characteristic assessments and monthly quality of life questionnaires are integrated into the App, and participants will be required to complete these assessments. The daily VAS for pain intensity will be monitored and a threshold will be set based on baseline VAS score. The interventional appointment will be scheduled once the threshold is reached. The primary outcome is the health condition and quality of life assessed by the five-level EuroQol five-dimensional questionnaire (EQ-5D-5L). Utility values of EQ-5D-5L will be assessed at baseline and 1, 3, and 6 months post-operative. Discussion The PreMaSy study aims to evaluate the effectiveness and safety of a novel App-based, patient-centered, self-assessment management system for chronic intractable pain. A randomized controlled trial is designed to test the non-inferiority of this precise management system compared to the monthly online follow-ups. It is also expected to yield valuable experiences regarding precision medicine. Trial registration ClinicalTrials.gov NCT05761392. Registered on March 07, 2023
    corecore