514 research outputs found

    A generalized exchange-correlation functional: the Neural-Networks approach

    Full text link
    A Neural-Networks-based approach is proposed to construct a new type of exchange-correlation functional for density functional theory. It is applied to improve B3LYP functional by taking into account of high-order contributions to the exchange-correlation functional. The improved B3LYP functional is based on a neural network whose structure and synaptic weights are determined from 116 known experimental atomization energies, ionization potentials, proton affinities or total atomic energies which were used by Becke in his pioneer work on the hybrid functionals [J. Chem. Phys. 98{\bf 98}, 5648 (1993)]. It leads to better agreement between the first-principles calculation results and these 116 experimental data. The new B3LYP functional is further tested by applying it to calculate the ionization potentials of 24 molecules of the G2 test set. The 6-311+G(3{\it df},2{\it p}) basis set is employed in the calculation, and the resulting root-mean-square error is reduced to 2.2 kcalβ‹…\cdotmolβˆ’1^{-1} in comparison to 3.6 kcalβ‹…\cdotmolβˆ’1^{-1} of conventional B3LYP/6-311+G(3{\it df},2{\it p}) calculation.Comment: 10 pages, 1figur

    Utilizing Autoregressive Networks for Full Lifecycle Data Generation of Rolling Bearings for RUL Prediction

    Full text link
    The prediction of rolling bearing lifespan is of significant importance in industrial production. However, the scarcity of high-quality, full lifecycle data has been a major constraint in achieving precise predictions. To address this challenge, this paper introduces the CVGAN model, a novel framework capable of generating one-dimensional vibration signals in both horizontal and vertical directions, conditioned on historical vibration data and remaining useful life. In addition, we propose an autoregressive generation method that can iteratively utilize previously generated vibration information to guide the generation of current signals. The effectiveness of the CVGAN model is validated through experiments conducted on the PHM 2012 dataset. Our findings demonstrate that the CVGAN model, in terms of both MMD and FID metrics, outperforms many advanced methods in both autoregressive and non-autoregressive generation modes. Notably, training using the full lifecycle data generated by the CVGAN model significantly improves the performance of the predictive model. This result highlights the effectiveness of the data generated by CVGans in enhancing the predictive power of these models

    Utilizing VQ-VAE for End-to-End Health Indicator Generation in Predicting Rolling Bearing RUL

    Full text link
    The prediction of the remaining useful life (RUL) of rolling bearings is a pivotal issue in industrial production. A crucial approach to tackling this issue involves transforming vibration signals into health indicators (HI) to aid model training. This paper presents an end-to-end HI construction method, vector quantised variational autoencoder (VQ-VAE), which addresses the need for dimensionality reduction of latent variables in traditional unsupervised learning methods such as autoencoder. Moreover, concerning the inadequacy of traditional statistical metrics in reflecting curve fluctuations accurately, two novel statistical metrics, mean absolute distance (MAD) and mean variance (MV), are introduced. These metrics accurately depict the fluctuation patterns in the curves, thereby indicating the model's accuracy in discerning similar features. On the PMH2012 dataset, methods employing VQ-VAE for label construction achieved lower values for MAD and MV. Furthermore, the ASTCN prediction model trained with VQ-VAE labels demonstrated commendable performance, attaining the lowest values for MAD and MV.Comment: 17 figure
    • …
    corecore