750 research outputs found

    A Thirty-Four Billion Solar Mass Black Hole in SMSS J2157-3602, the Most Luminous Known Quasar

    Get PDF
    From near-infrared spectroscopic measurements of the MgII emission line doublet, we estimate the black hole (BH) mass of the quasar, SMSS J215728.21-360215.1, as being (3.4 +/- 0.6) x 10^10 M_sun and refine the redshift of the quasar to be z=4.692. SMSS J2157 is the most luminous known quasar, with a 3000A luminosity of (4.7 +/- 0.5) x 10^47 erg/s and an estimated bolometric luminosity of 1.6 x 10^48 erg/s, yet its Eddington ratio is only ~0.4. Thus, the high luminosity of this quasar is a consequence of its extremely large BH -- one of the most massive BHs at z > 4.Comment: 7 pages, 3 figures. Accepted for publication in MNRA

    A Survey for High-redshift Gravitationally Lensed Quasars and Close Quasars Pairs. I. the Discoveries of an Intermediately-lensed Quasar and a Kpc-scale Quasar Pair at z∼5z\sim5

    Full text link
    We present the first results from a new survey for high-redshift (z≳5)(z\gtrsim5) gravitationally lensed quasars and close quasar pairs. We carry out candidate selection based on the colors and shapes of objects in public imaging surveys, then conduct follow-up observations to confirm the nature of high-priority candidates. In this paper, we report the discoveries of J0025--0145 (z=5.07z=5.07) which we identify as an {intermediately-lensed quasar, and J2329--0522 (z=4.85z=4.85) which is a kpc-scale close quasar pair. The {\em Hubble Space Telescope (HST)} image of J0025--0145 shows a foreground lensing galaxy located 0\farcs6 away from the quasar. However, J0025--0145 does not exhibit multiple lensed images of the quasar, and we identify J0025--0145 as an intermediate lensing system (a lensing system that is not multiply imaged but has a significant magnification). The spectrum of J0025--0145 implies an extreme Eddington ratio if the quasar luminosity is intrinsic, which could be explained by a large lensing magnification. The {\em HST} image of J0025--0145 also indicates a tentative detection of the quasar host galaxy in rest-frame UV, illustrating the power of lensing magnification and distortion in studies of high-redshift quasar host galaxies. J2329--0522 consists of two resolved components with significantly different spectral properties, and a lack of lensing galaxy detection under sub-arcsecond seeing. We identify it as a close quasar pair, which is the highest confirmed kpc-scale quasar pair to date. We also report four lensed quasars and quasar pairs at 2<z<42<z<4, and discuss possible improvements to our survey strategy.Comment: 23 pages, 10 figures, 6 tables. Accepted by the Astronomical Journa

    Spectroscopy of broad absorption line quasars at 3≲z≲53\lesssim z \lesssim 5 -- I: evidence for quasar winds shaping broad/narrow emission line regions

    Full text link
    We present an observational study of 22 broad absorption line quasars (BAL QSOs) at 3≲z≲53\lesssim z \lesssim5 based on optical/near-IR spectroscopy, aiming to investigate quasar winds and their effects. The near-IR spectroscopy covers the \hb\ and/or \mgii\ broad emission lines (BELs) for these quasars, allowing us to estimate their central black hole (BH) masses in a robust way. We found that our BAL QSOs on average do not have a higher Eddington ratio than that from non-BAL QSOs matched in redshift and/or luminosity. In a subset consisting of seven strong BAL QSOs possessing sub-relativistic BAL outflows, we see the prevalence of large \civ-BEL blueshift (∼\sim3100 km s−1^{-1}) and weak \oiii\ emission (particularly the narrow \oiiiλ\lambda5007 component), indicative of nuclear outflows affecting the narrow emission-line (NEL) regions. In another subset consisting of thirteen BAL QSOs having simultaneous observations of \mgii\ and \hb, we found a strong correlation between 3000~\AA\ and 5000~\AA\ monochromatic luminosity, consistent with that from non-BAL QSOs matched in redshift and luminosity; however, there is no correlation between \mgii\ and \hb\ in FWHM, likely due to nuclear outflows influencing the BEL regions. Our spectroscopic investigations offer strong evidence that the presence of nuclear outflows plays an important role in shaping the BEL/NEL regions of these quasars and possibly, regulating the growth of central supermassive black holes (SMBHs). We propose that BEL blueshift and BAL could be different manifestations of the same outflow system viewed at different sightlines and/or phases.Comment: 13 pages, 10 figures. Accepted for publication in Ap

    Exploring Reionization-Era Quasars IV: Discovery of Six New z≳6.5z \gtrsim 6.5 Quasars with DES, VHS and unWISE Photometry

    Full text link
    This is the fourth paper in a series of publications aiming at discovering quasars at the epoch of reionization. In this paper, we expand our search for z∼7z\sim 7 quasars to the footprint of the Dark Energy Survey (DES) Data Release One (DR1), covering ∼5000\sim 5000 deg2^2 of new area. We select z∼7z\sim 7 quasar candidates using deep optical, near-infrared (near-IR) and mid-IR photometric data from the DES DR1, the VISTA Hemisphere Survey (VHS), the VISTA Kilo-degree Infrared Galaxy (VIKING) survey, the UKIRT InfraRed Deep Sky Surveys -- Large Area Survey (ULAS) and the unblurred coadds from the Wide-field Infrared Survey Explore (WISEWISE) images (unWISE). The inclusion of DES and unWISE photometry allows the search to reach ∼\sim 1 magnitude fainter, comparing to our z≳6.5z \gtrsim 6.5 quasar survey in the northern sky (Wang et al. 2018). We report the initial discovery and spectroscopic confirmation of six new luminous quasars at z>6.4z>6.4, including an object at z=7.02z=7.02, the fourth quasar yet known at z>7z>7, from a small fraction of candidates observed thus far. Based on the recent measurement of z∼6.7z \sim 6.7 quasar luminosity function using the quasar sample from our survey in the northern sky, we estimate that there will be ≳\gtrsim 55 quasars at z>6.5z > 6.5 at M1450<−24.5M_{1450} < -24.5 in the full DES footprint.Comment: 8 pages, 3 figures, submitted to A

    An ultra-luminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30

    Full text link
    So far, roughly 40 quasars with redshifts greater than z=6 have been discovered. Each quasar contains a black hole with a mass of about one billion solar masses (109M⊙10^9 M_\odot). The existence of such black holes when the Universe was less than 1 billion years old presents substantial challenges to theories of the formation and growth of black holes and the coevolution of black holes and galaxies. Here we report the discovery of an ultra-luminous quasar, SDSS J010013.02+280225.8, at redshift z=6.30. It has an optical and near-infrared luminosity a few times greater than those of previously known z>6 quasars. On the basis of the deep absorption trough on the blue side of the Ly α\alpha emission line in the spectrum, we estimate the proper size of the ionized proximity zone associated with the quasar to be 26 million light years, larger than found with other z>6.1 quasars with lower luminosities. We estimate (on the basis of a near-infrared spectrum) that the black hole has a mass of ∼1.2×1010M⊙\sim 1.2 \times 10^{10} M_\odot, which is consistent with the 1.3×1010M⊙1.3 \times 10^{10} M_\odot derived by assuming an Eddington-limited accretion rate.Comment: 24 pages, 4 figures plus 4 extended data figures, published in Nature on 26 February 201

    Quasar Photometric Redshifts and Candidate Selection: A New Algorithm Based on Optical and Mid-Infrared Photometric Data

    Full text link
    We present a new algorithm to estimate quasar photometric redshifts (photo-zzs), by considering the asymmetries in the relative flux distributions of quasars. The relative flux models are built with multivariate Skew-t distributions in the multi-dimensional space of relative fluxes as a function of redshift and magnitude. For 151,392 quasars in the SDSS, we achieve a photo-zz accuracy, defined as the fraction of quasars with the difference between the photo-zz zpz_p and the spectroscopic redshift zsz_s, ∣Δz∣=∣zs−zp∣/(1+zs)|\Delta z| = |z_s-z_p|/(1+z_s) within 0.1, of 74%. Combining the WISE W1 and W2 infrared data with the SDSS data, the photo-zz accuracy is enhanced to 87%. Using the Pan-STARRS1 or DECaLS photometry with WISE W1 and W2 data, the photo-zz accuracies are 79% and 72%, respectively. The prior probabilities as a function of magnitude for quasars, stars and galaxies are calculated respectively based on (1) the quasar luminosity function; (2) the Milky Way synthetic simulation with the Besan\c{c}on model; (3) the Bayesian Galaxy Photometric Redshift estimation. The relative fluxes of stars are obtained with the Padova isochrones, and the relative fluxes of galaxies are modeled through galaxy templates. We test our classification method to select quasars using the DECaLS gg, rr, zz, and WISE W1 and W2 photometry. The quasar selection completeness is higher than 70% for a wide redshift range 0.5<z<4.50.5<z<4.5, and a wide magnitude range 18<r<21.518<r<21.5 mag. Our photo-zz regression and classification method has the potential to extend to future surveys. The photo-zz code will be publicly available.Comment: 22 pages, 17 figure, accepted by AJ. The code is available at https://doi.org/10.5281/zenodo.101440

    Constraining the Gravitational Lensing of z≳6z\gtrsim6 Quasars from their Proximity Zones

    Full text link
    Since their discovery twenty years ago, the observed luminosity function of z≳6z\gtrsim6 quasars has been suspected to be biased by gravitational lensing. Apart from the recent discovery of UHS J0439+1634 at z≈6.52z\approx6.52, no other strongly lensed z≳6z\gtrsim6 quasar has been conclusively identified. The hyperluminous z≈6.33z\approx6.33 quasar SDSS J0100+2802, believed to host a supermassive black hole of ∼1010M⊙\sim10^{10} M_\odot, has recently been claimed to be lensed by a factor of ∼450\sim450, which would negate both its extreme luminosity and black hole mass. However, its Lyα\alpha-transparent proximity zone is the largest known at z>6z>6, suggesting an intrinsically extreme ionizing luminosity. Here we show that the lensing hypothesis of z≳6z\gtrsim6 quasars can be quantitatively constrained by their proximity zones. We first show that our proximity zone analysis can recover the strongly lensed nature of UHS J0439+1634, with an estimated magnification μ=28.0−11.7+18.4(−18.3+44.9)\mu=28.0^{+18.4}_{-11.7}(^{+44.9}_{-18.3}) at 68% (95%) credibility that is consistent with previously published lensing models. We then show that the large proximity zone of SDSS J0100+2802 rules out lensing magnifications of μ>4.9\mu>4.9 at 95% probability, and conclusively rule out the proposed μ>100\mu>100 scenario. Future proximity zone analyses of existing z≳6z\gtrsim6 quasar samples have the potential to identify promising strongly lensed candidates, constrain the distribution of z≳6z\gtrsim6 quasar lensing, and improve our knowledge of the shape of the intrinsic quasar luminosity function.Comment: 8 pages, 4 figure

    Discovery of 21 New Changing-look AGNs in Northern Sky

    Full text link
    The rare case of changing-look (CL) AGNs, with the appearance or disappearance of broad Balmer emission lines within a few years, challenges our understanding of the AGN unified model. We present a sample of 21 new CL AGNs at 0.08<z<0.580.08<z<0.58, which doubles the number of such objects known to date. These new CL AGNs were discovered by several ways, from (1) repeat spectra in the SDSS, (2) repeat spectra in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and SDSS, and (3) photometric variability and new spectroscopic observations. We use the photometric data from surveys, including the SDSS imaging survey, the Pan-STARRS1, the DESI Legacy imaging survey, the Wide-field Infrared Survey Explorer (WISE), the Catalina Real-time Transient Survey, and the Palomar Transient Factory. The estimated upper limits of transition timescale of the CL AGNs in this sample spans from 0.9 to 13 years in the rest frame. The continuum flux in the optical and mid-infrared becomes brighter when the CL AGNs turn on, or vice versa. Variations of more than 0.2 mag in W1W1 band were detected in 15 CL AGNs during the transition. The optical and mid-infrared variability is not consistent with the scenario of variable obscuration in 10 CL AGNs at more than 3σ3\sigma confidence level. We confirm a bluer-when-brighter trend in the optical. However, the mid-infrared WISE colors W1−W2W1-W2 become redder when the objects become brighter in the W1W1 band, possibly due to a stronger hot dust contribution in the W2W2 band when the AGN activity becomes stronger. The physical mechanism of type transition is important for understanding the evolution of AGNs.Comment: Accepted for publication in Ap
    • …
    corecore