8 research outputs found

    Mode conversion enables optical pulling force in photonic crystal waveguides

    Get PDF
    We propose a robust scheme to achieve optical pulling force using the guiding modes supported in a hollow core double-mode photonic crystal waveguide instead of the structured optical beams in free space investigated earlier. The waveguide under consideration supports both the 0th order mode with a larger forward momentum and the 1st order mode with a smaller forward momentum. When the 1st order mode is launched, the scattering by the object inside the waveguide results in the conversion from the 1st order mode to the 0th order mode, thus creating the optical pulling force according to the conservation of linear momentum. We present the quantitative agreement between the results derived from the mode conversion analysis and those from rigorous simulation using the finite-difference in the time-domain numerical method. Importantly, the optical pulling scheme presented here is robust and broadband with naturally occurred lateral equilibriums and has a long manipulation range. Flexibilities of the current configuration make it valuable for the optical force tailoring and optical manipulation operation, especially in microfluidic channel systems

    Site-Mutation of Hydrophobic Core Residues Synchronically Poise Super Interleukin 2 for Signaling: Identifying Distant Structural Effects through Affordable Computations

    Get PDF
    A superkine variant of interleukin-2 with six site mutations away from the binding interface developed from the yeast display technique has been previously characterized as undergoing a distal structure alteration which is responsible for its super-potency and provides an elegant case study with which to get insight about how to utilize allosteric effect to achieve desirable protein functions. By examining the dynamic network and the allosteric pathways related to those mutated residues using various computational approaches, we found that nanosecond time scale all-atom molecular dynamics simulations can identify the dynamic network as efficient as an ensemble algorithm. The differentiated pathways for the six core residues form a dynamic network that outlines the area of structure alteration. The results offer potentials of using affordable computing power to predict allosteric structure of mutants in knowledge-based mutagenesis.This work was supported by the Natural Science Foundation of China (No. 20475019 & 21473065 to Yanfang Cui), and Wuhan Science and Technology R&D Program (No. 201060623259 & No. 200860423220 to Yanfang Cui)

    Application Potential of Constructed Wetlands on Different Operation Mode for Biologically Pre-Treatment of Rural Domestic Wastewater

    No full text
    In order to satisfy the requirements of rural domestic sewage, a bio-ecological combination system was proposed, including a biological treatment section (anaerobic hydrolysis tank and aerobic tank) and an ecological post-treatment section. This study observed the application potential of constructed wetlands (CW) on different operation modes for biologically pre-treated rural domestic wastewater. The organics and nutrient removal efficiency of the tidal flow constructed wetland (TFCW) and the horizontal subsurface flow constructed wetland (HFCW) were compared at a temperature range of 20–40 °C. During the stable phase, the higher chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and total phosphorus (TP) removal efficiencies existed in TFCW than HFCW, corresponding to the efficiency of COD 69.46%, NH4+-N 96.47%, and TP 57.38%, but lower performance on COD (61.43%), NH4+-N (84.99%), and TP (46.75%) removal in HFCW, which should be attributed to the increasement of aerobic heterotrophic bacteria (Arthrobact and Sphingomonas), nitrifiers (Nitrospira), and phosphate accumulating organisms (PAOs) (Pseudomonas). The microbial biomass was also increased from 2.13 ± 0.14 mg/g (HFCW) to 4.64 ± 0.18 mg/g (TFCW), which proved to strengthen the formation and growth of biofilm under a better oxygen supplement. Based on the relative abundance of functional genera in the microbial community, it showed that TFCW was more favorable for promoting the growth of heterotrophic bacteria, nitrifiers, and phosphate-accumulating organisms (PAOs). When temperature changed from −4 °C to 15 °C, the two-stage constructed wetlands (TFCW-HFCW and HFCW-TFCW) were used for improving the performance of pollutants removal. The results demonstrated that the effluent concentrations of TFCW-HFCW and HFCW-TFCW met the Class 1A discharge standard of DB32/3462-2020 in JiangSu Province, China. Therefore, this study will provide a useful and easy-to-implement technology for the operation as an ecological post-treatment section

    Application Potential of Constructed Wetlands on Different Operation Mode for Biologically Pre-Treatment of Rural Domestic Wastewater

    No full text
    In order to satisfy the requirements of rural domestic sewage, a bio-ecological combination system was proposed, including a biological treatment section (anaerobic hydrolysis tank and aerobic tank) and an ecological post-treatment section. This study observed the application potential of constructed wetlands (CW) on different operation modes for biologically pre-treated rural domestic wastewater. The organics and nutrient removal efficiency of the tidal flow constructed wetland (TFCW) and the horizontal subsurface flow constructed wetland (HFCW) were compared at a temperature range of 20–40 °C. During the stable phase, the higher chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and total phosphorus (TP) removal efficiencies existed in TFCW than HFCW, corresponding to the efficiency of COD 69.46%, NH4+-N 96.47%, and TP 57.38%, but lower performance on COD (61.43%), NH4+-N (84.99%), and TP (46.75%) removal in HFCW, which should be attributed to the increasement of aerobic heterotrophic bacteria (Arthrobact and Sphingomonas), nitrifiers (Nitrospira), and phosphate accumulating organisms (PAOs) (Pseudomonas). The microbial biomass was also increased from 2.13 ± 0.14 mg/g (HFCW) to 4.64 ± 0.18 mg/g (TFCW), which proved to strengthen the formation and growth of biofilm under a better oxygen supplement. Based on the relative abundance of functional genera in the microbial community, it showed that TFCW was more favorable for promoting the growth of heterotrophic bacteria, nitrifiers, and phosphate-accumulating organisms (PAOs). When temperature changed from −4 °C to 15 °C, the two-stage constructed wetlands (TFCW-HFCW and HFCW-TFCW) were used for improving the performance of pollutants removal. The results demonstrated that the effluent concentrations of TFCW-HFCW and HFCW-TFCW met the Class 1A discharge standard of DB32/3462-2020 in JiangSu Province, China. Therefore, this study will provide a useful and easy-to-implement technology for the operation as an ecological post-treatment section

    Site-mutation of hydrophobic core residues synchronically poise super interleukin 2 for signaling: identifying distant structural effects through affordable computations

    No full text
    A superkine variant of interleukin-2 with six site mutations away from the binding interface developed from the yeast display technique has been previously characterized as undergoing a distal structure alteration which is responsible for its super-potency and provides an elegant case study with which to get insight about how to utilize allosteric effect to achieve desirable protein functions. By examining the dynamic network and the allosteric pathways related to those mutated residues using various computational approaches, we found that nanosecond time scale all-atom molecular dynamics simulations can identify the dynamic network as efficient as an ensemble algorithm. The differentiated pathways for the six core residues form a dynamic network that outlines the area of structure alteration. The results offer potentials of using affordable computing power to predict allosteric structure of mutants in knowledge-based mutagenesis

    Momentum-topology-induced optical pulling force

    No full text
    We report an ingenious mechanism to obtain robust optical pulling force by a single plane wave via engineering the topology of light momentum in the background. The underlying physics is found to be the topological transition of the light momentum from a usual convex shape to a starlike concave shape in the carefully designed background, such as a photonic crystal structure. The principle and results reported here shed insightful concepts concerning optical pulling, and pave the way for a new class of advanced optical manipulation technique, with potential applications of drug delivery and cell sorting.Ministry of Education (MOE)Published versionThis work was supported by National Natural Science Foundation of China (Grants No. 11874134 and No. 11704088). We thank the HPC Studio at Physics Department of Harbin Institute of Technology for access to computing resources through [email protected]. C-W.Q acknowledges the support from the Ministry of Education, Singapore (Grant No. R-263-000-D11-114). M. N-V. acknowledges support from Ministerio de Ciencia, Innovacion y Universidades of Spain through Grants No. FIS2014-55563-REDC, No. FIS2015-69295-C3-1-P, and No. PGC2018-095777-B-C21
    corecore