27 research outputs found
Stacking-dependent electronic structure of trilayer graphene resolved by nanospot angle-resolved photoemission spectroscopy
The crystallographic stacking order in multilayer graphene plays an important
role in determining its electronic structure. In trilayer graphene,
rhombohedral stacking (ABC) is particularly intriguing, exhibiting a flat band
with an electric-field tunable band gap. Such electronic structure is distinct
from simple hexagonal stacking (AAA) or typical Bernal stacking (ABA), and is
promising for nanoscale electronics, optoelectronics applications. So far clean
experimental electronic spectra on the first two stackings are missing because
the samples are usually too small in size (um or nm scale) to be resolved by
conventional angle-resolved photoemission spectroscopy (ARPES). Here by using
ARPES with nanospot beam size (NanoARPES), we provide direct experimental
evidence for the coexistence of three different stackings of trilayer graphene
and reveal their distinctive electronic structures directly. By fitting the
experimental data, we provide important experimental band parameters for
describing the electronic structure of trilayer graphene with different
stackings
Second generation Dirac cones and inversion symmetry breaking induced gaps in graphene/hexagonal boron nitride
Graphene/h-BN has emerged as a model van der Waals heterostructure, and the
band structure engineering by the superlattice potential has led to various
novel quantum phenomena including the self-similar Hofstadter butterfly states.
Although newly generated second generation Dirac cones (SDCs) are believed to
be crucial for understanding such intriguing phenomena, so far fundamental
knowledge of SDCs in such heterostructure, e.g. locations and dispersion of
SDCs, the effect of inversion symmetry breaking on the gap opening, still
remains highly debated due to the lack of direct experimental results. Here we
report first direct experimental results on the dispersion of SDCs in 0
aligned graphene/h-BN heterostructure using angle-resolved photoemission
spectroscopy. Our data reveal unambiguously SDCs at the corners of the
superlattice Brillouin zone, and at only one of the two superlattice valleys.
Moreover, gaps of 100 meV and 160 meV are observed at the
SDCs and the original graphene Dirac cone respectively. Our work highlights the
important role of a strong inversion symmetry breaking perturbation potential
in the physics of graphene/h-BN, and fills critical knowledge gaps in the band
structure engineering of Dirac fermions by a superlattice potential.Comment: Nature Physics 2016, In press, Supplementary Information include
Fully gapped topological surface states in BiSe films induced by a d-wave high-temperature superconductor
Topological insulators are a new class of materials, that exhibit robust
gapless surface states protected by time-reversal symmetry. The interplay
between such symmetry-protected topological surface states and symmetry-broken
states (e.g. superconductivity) provides a platform for exploring novel quantum
phenomena and new functionalities, such as 1D chiral or helical gapless
Majorana fermions, and Majorana zero modes which may find application in
fault-tolerant quantum computation. Inducing superconductivity on topological
surface states is a prerequisite for their experimental realization. Here by
growing high quality topological insulator BiSe films on a d-wave
superconductor BiSrCaCuO using molecular beam epitaxy,
we are able to induce high temperature superconductivity on the surface states
of BiSe films with a large pairing gap up to 15 meV. Interestingly,
distinct from the d-wave pairing of BiSrCaCuO, the
proximity-induced gap on the surface states is nearly isotropic and consistent
with predominant s-wave pairing as revealed by angle-resolved photoemission
spectroscopy. Our work could provide a critical step toward the realization of
the long sought-after Majorana zero modes.Comment: Nature Physics, DOI:10.1038/nphys274
Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2
Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed
matter physics counterpart of relativisticWeyl fermion [13] originally
introduced in high energy physics. The Weyl semimetal realized in the TaAs
class features multiple Fermi arcs arising from topological surface states [10,
11, 14-16] and exhibits novel quantum phenomena, e.g., chiral anomaly induced
negative mag-netoresistance [17-19] and possibly emergent supersymmetry [20].
Recently it was proposed theoretically that a new type (type-II) of Weyl
fermion [21], which does not have counterpart in high energy physics due to the
breaking of Lorentz invariance, can emerge as topologically-protected touching
between electron and hole pockets. Here, we report direct spectroscopic
evidence of topological Fermi arcs in the predicted type-II Weyl semimetal
MoTe2 [22-24]. The topological surface states are confirmed by directly
observing the surface states using bulk-and surface-sensitive angle-resolved
photoemission spectroscopy (ARPES), and the quasi-particle interference (QPI)
pattern between the two putative Fermi arcs in scanning tunneling microscopy
(STM). Our work establishes MoTe2 as the first experimental realization of
type-II Weyl semimetal, and opens up new opportunities for probing novel
phenomena such as exotic magneto-transport [21] in type-II Weyl semimetals.Comment: submitted on 01/29/2016. Nature Physics, in press. Spectroscopic
evidence of the Fermi arcs from two complementary surface sensitive probes -
ARPES and STS. A comparison of the calculated band structure for T_d and 1T'
phase to identify the topological Fermi arcs in the T_d phase is also
included in the supplementary informatio
SIMULATIONAL AND EXPERIMENTAL STUDY ON THE CRITICAL FACTORS OF HIGH-SPEED BRAKING SQUEAL
Complex eigenvalue analysis using ABAQUS has been carried out,based on a simplified finite element model of high-speed disc brake system.The critical factors generating brake squeal have been computationally studied and verified by experiments.Simulation results show that,brake squeal more likely to occur under the conditions of low-speed,high pressure,negative μ-υ slope,and high coefficient of friction.The effects of sliding speed and normal contact pressure on the generation of brake squeal have been verified.This study will provide effective guidance in the prevention and control of brake squeal