27 research outputs found

    Optimization Study of Combination Energy-Saving Measure for Mechanical Oil Production Well

    Get PDF
    In this paper, Fibonacci optimization-searching method and Golden section method are applied for optimization of combination energy-saving measure. And technology evaluating for several main energy-saving equipment and combination installations is made. The optimal energy-saving installation is determined by using the method established

    Molecular Characterization, Phylogenetic, Expression, and Protective Immunity Analysis of OmpF, a Promising Candidate Immunogen Against Yersinia ruckeri Infection in Channel Catfish

    Get PDF
    Outer membrane porins, as the major components of Gram-negative bacterial membrane proteins, have been proven to be involved in interactions with the host immune system and potent protective antigen candidates against bacterial infection in fish. Outer membrane porin F (OmpF) is one of the major porins of Yersinia ruckeri (Y. ruckeri), the causative agent of enteric red mouth disease of salmonid and non-salmonid fish. In the present study, the molecular characterization and phylogenetic analysis of OmpF gene was studied, heterogenous expression, immunogenicity and protective immunity of OmpF were systemically evaluated as a subunit vaccine for channel catfish against Y. ruckeri infection. The results showed that OmpF gene was highly conserved among 15 known Yersinia species based on the analysis of conserved motifs, sequences alignment and phylogenetic tree, and was subjected to negative/purifying selection with global dN/dS ratios value of 0.649 throughout the evolution. Besides, OmpF was also identified to have immunogenicity by western blotting and was verified to be located on the surface of Y. ruckeri using cell surface staining and indirect immunofluorescence assays. Moreover, recombinant OmpF (rtOmpF) as a subunit vaccine was injected with commercial adjuvant ISA763, significantly enhanced the immune response by increasing serum antibody levels, lysozyme activity, complement C3 activity, total protein content, SOD activity, immune-related genes expression in the head kidney and spleen, and survival percent of channel catfish against Y. ruckeri infection. Thus, our present results not only enriched the information of molecular characterization and phylogenetics of OmpF, but also demonstrated that OmpF holds promise to be used as a potential antigen against Y. ruckeri infection in fish

    Evaluation and Selection of Appropriate Reference Genes for Real-Time Quantitative PCR Analysis of Gene Expression in Nile Tilapia (Oreochromis niloticus) during Vaccination and Infection

    No full text
    qPCR as a powerful and attractive methodology has been widely applied to aquaculture researches for gene expression analyses. However, the suitable reference selection is critical for normalizing target genes expression in qPCR. In the present study, six commonly used endogenous controls were selected as candidate reference genes to evaluate and analyze their expression levels, stabilities and normalization to immune-related gene IgM expression during vaccination and infection in spleen of tilapia with RefFinder and GeNorm programs. The results showed that all of these candidate reference genes exhibited transcriptional variations to some extent at different periods. Among them, EF1A was the most stable reference with RefFinder, followed by 18S rRNA, ACTB, UBCE, TUBA and GAPDH respectively and the optimal number of reference genes for IgM normalization under different experiment sets was two with GeNorm. Meanwhile, combination the Cq (quantification cycle) value and the recommended comprehensive ranking of reference genes, EF1A and ACTB, the two optimal reference genes, were used together as reference genes for accurate analysis of immune-related gene expression during vaccination and infection in Nile tilapia with qPCR. Moreover, the highest IgM expression level was at two weeks post-vaccination when normalized to EF1A, 18S rRNA, ACTB, and EF1A together with ACTB compared to one week post-vaccination before normalizing, which was also consistent with the IgM antibody titers detection by ELISA

    New developments in wind energy forecasting with artificial intelligence and big data: a scientometric insight

    No full text
    Accurate forecasting results are crucial for increasing energy efficiency and lowering energy consumption in wind energy. Big data and artificial intelligence (AI) have great potential in wind energy forecasting. Although the literature on this subject is extensive, it lacks a comprehensive research status survey. In identifying the evolution rules of big data and AI methods in wind energy forecasting, this paper summarizes the studies on big data and AI in wind energy forecasting over the last two decades. The existing big data types, analysis techniques, and forecasting methods are classified and sorted by combining literature reviews and scientometrics methods. Furthermore, the research trend of wind energy forecasting methods is determined based on big data and artificial intelligence by combing the existing research hotspots and frontier progress. Finally, this paper summarizes existing research’s opportunities, challenges, and implications from various perspectives. The research results serve as a foundation for future research and promote the further development of wind energy forecasting

    The Seepage Model Considering Liquid/Solid Interaction in Confined Nanoscale Pores

    No full text
    Different from conventional reservoirs, nanoscale pores and fractures are dominant in tight or shale reservoirs. The flow behaviors of hydrocarbons in nanopores (called “confined space”) are more complex than that of bulk spaces. The interaction between liquid hydrocarbons and solid pore wall cannot be neglected. The viscosity formula which is varied with the pore diameter and interaction coefficient of liquids and solids in confined nanopores has been introduced in this paper to describe the interaction effects of hydrocarbons and pore walls. Based on the Navier-Stokes equation, the governing equation considered liquid/solid effect in two dimensions has been established, and approximate theoretical solutions to the governing equations have been achieved after mathematic simplification. By introducing the vortex equation, the complex numerical seepage model has been discretized and solved. Numerical results show that the radial velocity distribution near the solid wall has an obvious change when considering the liquid/solid interaction. The results consist well with that approximate mathematical solution. And when the capillary radius is smaller, the liquid and solid interaction coefficient n is greater. The liquid and solid interaction obviously cannot be neglected in the seepage model if the capillary radius is small than 50 nm when n>0.1. The numerical model has also been further validated by two types of nanopore flow tests: from pore to throat and inversely from throat to pore. There is no big difference in flow regularity of throat to pore model considering when liquid/solid interaction or not, whereas the liquid/solid interaction of pore to throat model totally cannot be overlooked

    The Synthesis of Associative Copolymers with Both Amphoteric and Hydrophobic Groups and the Effect of the Degree of Association on the Instability of Emulsions

    No full text
    The acrylamide (AM)/methacryloyl ethyl sulfobetaine (SPE)/behenyl polyoxyethylene ether methacrylate (BEM) terpolymer (PASB) was synthesized by soap-free emulsion polymerization. Four types of PASBs were synthesized by adjusting the moles of AM and BEM with constant total moles of monomers. The synthesized copolymers were characterized by Fourier-transform infrared spectroscopy, thermogravimetry, molecular weight, and viscosity. By measuring the microscopic morphology and backscattered light intensity of the emulsions, the instability process of the emulsions prepared by PASBs was investigated in detail. The main instability processes of the emulsions prepared from PASBs within 45 min were flocculation and coalescence. The intermolecular association of copolymer PASBs was dominated by the behenyl functional groups on the molecular chains. The stability of the emulsions, which were prepared from isoviscosity aqueous solutions controlled by the concentration of the associative copolymers, was increased with the degree of association of copolymers. The hydrophobic association between the copolymer molecules can further slow down the flocculation and coalescence of the emulsion droplets on the basis of the same aqueous solution viscosity, which is one of the reasons for improving the stability of the emulsion

    Morphology of the Spleen in Oreochromis niloticus: Splenic Subregions and the Blood-Spleen Barrier

    No full text
    The spleen is a separate organ of the teleost, playing an essential role in immune reactions. The morphology of the spleen is different from the fish species. Little knowledge about the spleen structure and the blood splenic barrier (BSB) in Nile tilapia has been reported. To address this issue, we studied the histology of the spleen and the BSB in healthy Nile tilapia. The morphology of the spleen was observed, then H&E staining, modified Jame’s staining, and ultrastructural techniques were performed to portion the spleen into three subregions and analyze the location of components and fibers. Thereafter, vital staining of Nile tilapia with Trypan blue was conducted to elucidate the composition and function of BSB. Histologically, the spleen could be divided into three subregions (inner, middle, and outer). The venules, clumps of lymphocytes, and vessels were separately characterized features of the outer, middle, and inner layers. Post injection, Trypan blue was intercepted in the endotheliocytes of ellipsoids in the middle layer (i.p.) or was deposited to the reticular fibers surrounding the ellipsoids (i.v.). Additionally, the amount of Trypan blue was shown to be positively correlated to that of the Acid phosphatase expressed. In conclusion, the spleen could be portioned into three subregions, and the BSB lay in the middle layer, composed of the cuboidal-shaped endotheliocytes and the surrounding reticular fibers of the ellipsoid capillaries. The present study enriched the research of immune tissues and system in tilapia and provided reference for the study of spleen in other fish species

    Adjuvant Immune Enhancement of Subunit Vaccine Encoding pSCPI of Streptococcus iniae in Channel Catfish (Ictalurus punctatus)

    No full text
    Channel catfish (Ictalurus punctatus) is an important agricultural fish that has been plagued by Streptococcus iniae (S. iniae) infections in recent years, some of them severe. C5a peptidase is an important virulent factor of S. iniae. In this study, the subunit vaccine containing the truncated part of C5a peptidase (pSCPI) was mixed with aluminum hydroxide gel (AH), propolis adjuvant (PA), and Freund’s Incomplete Adjuvant (FIA). The immunogenicity of the pSCPI was detected by Western-blot in vitro. The relative percent survival (RPS), lysozyme activity, antibody titers, and the expression of the related immune genes were monitored in vivo to evaluate the immune effects of the three different adjuvants. The results showed that pSCPI exerted moderate immune protection (RPS = 46.43%), whereas each of the three adjuvants improved the immune protection of pSCPI. The immunoprotection of pSCPI + AH, pSCPI + PA, and pSCPI + FIA was characterized by RPS values of 67.86%, 75.00% and, 85.71%, respectively. Further, each of the three different adjuvanted pSCPIs stimulated higher levels of lysozyme activity and antibody titers than the unadjuvanted pSCPI and/or PBS buffer. In addition, pSCPI + FIA and pSCPI + PA induced expression of the related immune genes under investigation, which was substantially higher than the levels stimulated by PBS. pSCPI + AH significantly stimulated the induction of MHC II β, CD4-L2, and IFN-γ, while it induced slightly higher production of TNF-α and even led to a decrease in the levels of IL-1β, MHC I α, and CD8 α. Therefore, we conclude that compared with the other two adjuvants, FIA combined with pSCPI is a more promising candidate adjuvant against S. iniae in channel catfish

    Cloning and Characterization of Surface-Localized α-Enolase of Streptococcus iniae, an Effective Protective Antigen in Mice

    No full text
    Streptococcus iniae is a major fish pathogen that can also cause human bacteremia, cellulitis and meningitis. Screening for and identification of protective antigens plays an important role in developing therapies against S. iniae infections. In this study, we indicated that the α-enolase of S. iniae was not only distributed in the cytoplasm and associated to cell walls, but was also secreted to the bacterial cell surface. The functional identity of the purified recombinant α-enolase protein was verified by its ability to catalyze the conversion of 2-phosphoglycerate (2-PGE) to phosphoenolpyruvate (PEP), and both the recombinant and native proteins interacted with human plasminogen. The rabbit anti-rENO serum blockade assay shows that α-enolase participates in S. iniae adhesion to and invasion of BHK-21 cells. In addition, the recombinant α-enolase can confer effective protection against S. iniae infection in mice, which suggests that α-enolase has potential as a vaccine candidate in mammals. We conclude that S. iniae α-enolase is a moonlighting protein that also associates with the bacterial outer surface and functions as a protective antigen in mice
    corecore