47,260 research outputs found
Localization of tyrosine kinase-coding region in v-abl oncogene by the expression of v-abl-encoded proteins in bacteria
A series of plasmids containing different segments of the v-abl oncogene have been constructed to express different portions of the v- abl protein in bacteria. The tyrosine kinase activity of these proteins was determined by an in vitro assay employing histones or angiotensin II as substrates for the v-abl-encoded tyrosine kinase. These experiments show that the 5'-1.2 kilobases of v-abl is necessary and sufficient to produce an active tyrosine kinase which is functional as a monomeric soluble protein. The kinase-coding region corresponds to the minimal region of v-abl required for the transformation of fibroblasts. The kinase-coding region also coincides with the conserved protein sequences which are found in other tyrosine kinases. A compact domain of the v-abl protein including this kinase-coding region can accumulate to high levels in bacteria. The C-terminal region of the v- abl protein is not needed for the kinase activity and is rapidly degraded in bacteria
Recommended from our members
Laser Polishing of Silica Rods
Lasers have been widely used in surface modification. In this research a CO2 continuous
wave laser has been used to polish the slot surface of the silica rods. The strong absorption of the
lO.6 um C02 radiation by the silica surface promotes the softening of a very thin layer of material
that flows under the action of surface tension. As a result, a mirror smooth glassy surface has been
formed which decreases the surface roughness without any substantial change in the surface
geometries. The effect of laser to surface inclination angle on the requisite power requirement was
assessed experimentally and theoretically. With laser beam scanning controlled by a computer aided design (CAD) database without specific tooling or human intervention, reliability and
reproducibility of this process have been greatly improved compared to conventional fire polishing.
The potential use of laser polishing as a post-processing step for freeform-fabricated parts is very
promising.Mechanical Engineerin
The 68,000-Dalton Neurofilament-Associated Polypeptide is a Component of Nonneuronal Cells and of Skeletal Myofibrils
Purified preparations of 10-nm neurofilaments from rat spinal cord and bovine or porcine brain contain a predominant 68,000-dalton polypeptide. This polypeptide is also a major component of the neurofilaments that copurify with brain tubulin isolated by cycles of polymerization and depolymerization. A protein that has the same isoelectric point and molecular weight as the neurofilament-associated polypeptide has also been identified as a cytoskeletal protein in a variety of avian and mammalian cell types, including baby hamster kidney (BHK-21) mouse 3T3, Novikoff rat hepatoma, chicken fibroblast, and chicken muscle cells. This protein is also a component of isolated chicken skeletal myofibrils. One-dimensional peptide maps of the 68,000-dalton proteins purified by two-dimensional isoelectric focusing/NaDodSO4/polyacrylamide gel electrophoresis from myofibrils, cycled tubulin, purified neurofilaments, and various cultured cell types were identical. In immunofluorescence this protein was associated with cytoplasmic intermediate filaments and myofibril Z discs. These results indicate that the neurofilament-associated polypeptide is a conserved protein that is present in many different cell types in addition to neuronal cells. Because some of these cells contain the major components of two other intermediate filament classes, desmin and vimentin, a given cell type may contain the subunits of at least three distinct intermediate filament types
Mammalian cells in culture actively export specific microRNAs
The discovery of microRNAs (miRNAs) as a new class of regulators of gene expression has triggered an explosion of research, but has left many unanswered questions about how this regulation works and how it is integrated with other regulatory mechanisms. A number of miRNAs have been found to be present in blood plasma and other body fluids of humans and mice in surprisingly high concentrations. This observation was unexpected in two respects: first, the fact that these molecules are present at all outside the cell at significant concentrations; and second, that these molecules appear to be stable outside of the cell. In light of this it has been suggested that the biological function of miRNAs may also extend outside of the cell and mediate cell-cell communication^[1-5]^. Such a system would be expected to export specific miRNAs from cells in response to specific biological stimuli. We report here that after serum deprivation several human cell lines tested do export a spectrum of miRNAs into the culture medium. The export response is substantial and prompt. The exported miRNAs are found both within and outside of microvesicles and exosomes. We have identified some candidate protein components of this system outside the cell, and found one exported protein that plays a role in protecting miRNA from degradation. Our results point to a hitherto unrecognized and uncharacterized miRNA trafficking system in mammalian cells that may involve cell-cell communication
Recommended from our members
Extraction of tidal channel networks from airborne scanning laser altimetry and aerial photography
The study of the morphodynamics of tidal channel networks is important because of their role in tidal propagation and the evolution of salt-marshes and tidal flats. Channel dimensions range from tens of metres wide and metres deep near the low water mark to only 20-30cm wide and 20cm deep for the smallest channels on the marshes. The conventional method of measuring the networks is cumbersome, involving manual digitising of aerial photographs. This paper describes a semi-automatic knowledge-based network extraction method that is being implemented to work using airborne scanning laser altimetry (and later aerial photography). The channels exhibit a width variation of several orders of magnitude, making an approach based on multi-scale line detection difficult. The processing therefore uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels using a distance-with-destination transform. Breaks in the networks are repaired by extending channel ends in the direction of their ends to join with nearby channels, using domain knowledge that flow paths should proceed downhill and that any network fragment should be joined to a nearby fragment so as to connect eventually to the open sea
Influence of an aperture on the performance of a two-degree-of-freedom iron-cored spherical permanent-magnet actuator
Abstract—This paper describes a computational and experimental study of a two-degree-of-freedom spherical permanent-magnet actuator equipped with an iron stator. In particular, it considers the effect of introducing an aperture in the stator core to facilitate access to the armature. The resultant magnetic field distribution in the region occupied by the stator windings, the net unbalanced radial force, and the resulting reluctance torque are determined by three-dimensional magnetostatic finite-element
analysis. The predicted reluctance torque is validated experimentally, and its implications on actuator performance are described
- …