1,799 research outputs found
Stacking tunable interlayer magnetism in bilayer CrI3
Diverse interlayer tunability of physical properties of two-dimensional
layers mostly lies in the covalent-like quasi-bonding that is significant in
electronic structures but rather weak for energetics. Such characteristics
result in various stacking orders that are energetically comparable but may
significantly differ in terms of electronic structures, e.g. magnetism.
Inspired by several recent experiments showing interlayer
anti-ferromagnetically coupled CrI3 bilayers, we carried out first-principles
calculations for CrI3 bilayers. We found that the anti-ferromagnetic coupling
results from a new stacking order with the C2/m space group symmetry, rather
than the graphene-like one with R3 as previously believed. Moreover, we
demonstrated that the intra- and inter-layer couplings in CrI3 bilayer are
governed by two different mechanisms, namely ferromagnetic super-exchange and
direct-exchange interactions, which are largely decoupled because of their
significant difference in strength at the strong- and weak-interaction limits.
This allows the much weaker interlayer magnetic coupling to be more feasibly
tuned by stacking orders solely. Given the fact that interlayer magnetic
properties can be altered by changing crystal structure with different stacking
orders, our work opens a new paradigm for tuning interlayer magnetic properties
with the freedom of stacking order in two dimensional layered materials
Altered Connexin 43 Expression Underlies Age-Dependent Decrease of Regulatory T Cell Suppressor Function in Nonobese Diabetic Mice
Type 1 diabetes is one of the most extensively studied autoimmune diseases, but the cellular and molecular mechanisms leading to T cell–mediated destruction of insulin-producing β cells are still not well understood. In this study, we show that regulatory T cells (Tregs) in NOD mice undergo age-dependent loss of suppressor functions exacerbated by the decreased ability of activated effector T cells to upregulate Foxp3 and generate Tregs in the peripheral organs. This age-dependent loss is associated with reduced intercellular communication mediated by gap junctions, which is caused by impaired upregulation and decreased expression of connexin 43. Regulatory functions can be corrected, even in T cells isolated from aged, diabetic mice, by a synergistic activity of retinoic acid, TGF-β, and IL-2, which enhance connexin 43 and Foxp3 expression in Tregs and restore the ability of conventional CD4+ T cells to upregulate Foxp3 and generate peripherally derived Tregs. Moreover, we demonstrate that suppression mediated by Tregs from diabetic mice is enhanced by a novel reagent, which facilitates gap junction aggregation. In summary, our report identifies gap junction–mediated intercellular communication as an important component of the Treg suppression mechanism compromised in NOD mice and suggests how Treg mediated immune regulation can be improved
Sectional normalization and recognization on the PV-Diagram of reciprocating compressor
The shortcomings of familiar normalization method on the PV-Diagram of reciprocating compressor are analyzed in the paper. A sectional normalization method of the PV-Diagram was put forward, and a recognizing technique of fault characteristics based on support vector machines for cylinder and piston system in reciprocating compressor is introduced. Four sections of curve in the PV-Diagram indicate four stages of a gas compression cycle. After the PV-Diagram is normalized with the new method, the curvilinear curvatures are unchanged in comparison with the original diagram. The contour and shape relations between normal and fault state character curves are retained. The pressure signals collected from cylinder are normalized and treated as characteristic vectors, and the vectors are inputted into a multi-class classifier composed of many support vector machines in order to classify fault modes. The experimental results show that the method can identify faults of the cylinder and piston system more correctly
- …