279 research outputs found

    4-(4-Fluoro­anilino)-N-(4-fluoro­phen­yl)-3-nitro­benzamide

    Get PDF
    In the title compound, C19H13F2N3O3, the anilinobenzamide unit is essentially planar, with a maximum deviation of 0.036 (3) Å. The nitro group and the benzene ring form dihedral angles of 9.6 (5)and 62.20 (8)°, respectively, with the anilinobenzamide unit. An intra­molecular N—H⋯O inter­action occurs. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O, N—H⋯O and C—H⋯F hydrogen bonds, which stabilize the structure

    Optimal CHP Planning in Integrated Energy Systems considering Use-of-System Charges

    Get PDF
    This paper proposes a novel optimal planning model for combined heat and power (CHP) in multiple energy systems of natural gas and electricity to benefit both networks by deferring investment for network owners and reducing use-of-system (UoS) charge for network users. The new planning model considers the technical constraints of both electricity and natural gas systems. A two-stage planning approach is proposed to determine the optimal site and size of CHPs. In the first stage, a long-run incremental cost matrix is designed to reflect CHP locational impact on both natural gas and electricity network investment, used as a criterion to choose the optimal location. In the second stage, CHP size is determined by solving an integrated optimal model with the objective to minimize total incremental network investment costs. The proposed method is resolved by the interior-point method and implemented on a practically integrated electricity and natural gas systems. Two case studies are conducted to test the performance for single and multiple CHPs cases. This paper enables cost-efficient CHP planning to benefit integrated natural gas and electricity networks and network users in terms of reduced network investment cost and consequently reduced UoS charges

    Planning of Regional Urban Bus Charging Facility:A Case Study of Fengxian, Shanghai

    Get PDF
    The electrification of public transport is of great significance to alleviating environmental pollution and energy problems. The construction of charging stations for electric buses (EBs) is the key step for the electrification of public transport and receives more and more attention. This paper proposes a new urban electric bus charging station planning algorithm which consists of two parts, park-maintaining (PM) charging station planning and midway supply (MS) charging station planning. Firstly, bus routes are classified based on charging demands. Accordingly, the PM charging station planning model is divided into full slow charging (FSC) model, Bus Rapid Transit (BRT) model and Hybrid model. Secondly, the improved grid AP algorithm is applied to plan MS charging stations to enhance the EB operation reliability. Then by multi-terminal charging pile optimization model, the economics of charging facilities construction is enhanced. Finally, via an ordered control charging algorithm, the economic profits of overall planning schemes are enhanced. The bus system in Fengxian, Shanghai is taken as an example to demonstrate the proposed method. Results prove that the proposed method can effectively meet the charging demands of EBs and improve the operating reliability of the EB system. </p

    Statistical Analysis of Quantum State Learning Process in Quantum Neural Networks

    Full text link
    Quantum neural networks (QNNs) have been a promising framework in pursuing near-term quantum advantage in various fields, where many applications can be viewed as learning a quantum state that encodes useful data. As a quantum analog of probability distribution learning, quantum state learning is theoretically and practically essential in quantum machine learning. In this paper, we develop a no-go theorem for learning an unknown quantum state with QNNs even starting from a high-fidelity initial state. We prove that when the loss value is lower than a critical threshold, the probability of avoiding local minima vanishes exponentially with the qubit count, while only grows polynomially with the circuit depth. The curvature of local minima is concentrated to the quantum Fisher information times a loss-dependent constant, which characterizes the sensibility of the output state with respect to parameters in QNNs. These results hold for any circuit structures, initialization strategies, and work for both fixed ansatzes and adaptive methods. Extensive numerical simulations are performed to validate our theoretical results. Our findings place generic limits on good initial guesses and adaptive methods for improving the learnability and scalability of QNNs, and deepen the understanding of prior information's role in QNNs.Comment: 28 pages including appendix. To appear at NeurIPS 202

    Myelitis Caused by Infection of Angiostrongylus cantonensis

    Get PDF

    A Wasserstein distributionally robust planning model for renewable sources and energy storage systems under multiple uncertainties

    Get PDF
    Nowadays, electricity markets and carbon trading mechanisms can promote investment in renewable sources but also generate new uncertainties in decision-making. In this paper, a two-stage Wasserstein distributionally robust optimization (WDRO) model is presented to determine the optimal planning strategy for renewable energy generators (REGs) and energy storage systems (ESSs) in the distribution network. This model considers supply-side and demand-side uncertainties in the distribution network and the interaction uncertainty from the main grid which are depicted by the ambiguity sets based on the Wasserstein metric and historical data. Meanwhile, both 1-norm and -norm Wasserstein metric constraints are considered to satisfy the decision-makers different preference. Furthermore, to solve this WDRO model, a systematic solution method with a three-step process is developed. Numerical results from a modified IEEE 33-node system and a 130-node system in the real world demonstrate the advantages of the two-stage WDRO model and the effectiveness of the solution method.</p

    Defining SSO Power and Characterizing SSO Propagation in Power System with Wind Farms Integration

    Get PDF

    Optimal Design and Configuration Strategy for the Physical Layer of Energy Router Based on the Complex Network Theory

    Get PDF
    corecore