1 research outputs found
Recommended from our members
Final report on LDRD project : elucidating performance of proton-exchange-membrane fuel cells via computational modeling with experimental discovery and validation.
In this report, we document the accomplishments in our Laboratory Directed Research and Development project in which we employed a technical approach of combining experiments with computational modeling and analyses to elucidate the performance of hydrogen-fed proton exchange membrane fuel cells (PEMFCs). In the first part of this report, we document our focused efforts on understanding water transport in and removal from a hydrogen-fed PEMFC. Using a transparent cell, we directly visualized the evolution and growth of liquid-water droplets at the gas diffusion layer (GDL)/gas flow channel (GFC) interface. We further carried out a detailed experimental study to observe, via direct visualization, the formation, growth, and instability of water droplets at the GDL/GFC interface using a specially-designed apparatus, which simulates the cathode operation of a PEMFC. We developed a simplified model, based on our experimental observation and data, for predicting the onset of water-droplet instability at the GDL/GFC interface. Using a state-of-the-art neutron imaging instrument available at NIST (National Institute of Standard and Technology), we probed liquid-water distribution inside an operating PEMFC under a variety of operating conditions and investigated effects of evaporation due to local heating by waste heat on water removal. Moreover, we developed computational models for analyzing the effects of micro-porous layer on net water transport across the membrane and GDL anisotropy on the temperature and water distributions in the cathode of a PEMFC. We further developed a two-phase model based on the multiphase mixture formulation for predicting the liquid saturation, pressure drop, and flow maldistribution across the PEMFC cathode channels. In the second part of this report, we document our efforts on modeling the electrochemical performance of PEMFCs. We developed a constitutive model for predicting proton conductivity in polymer electrolyte membranes and compared model prediction with experimental data obtained in our laboratory and from literature. Moreover, we developed a one-dimensional analytical model for predicting electrochemical performance of an idealized PEMFC with small surface over-potentials. Furthermore, we developed a multi-dimensional computer model, which is based on the finite-element method and a fully-coupled implicit solution scheme via Newton's technique, for simulating the performance of PEMFCs. We demonstrated utility of our finite-element model by comparing the computed current density distribution and overall polarization with those measured using a segmented cell. In the last part of this report, we document an exploratory experimental study on MEA (membrane electrode assembly) degradation