170,759 research outputs found

    Random Isotropic Structures and Possible Glass Transitions in Diblock Copolymer Melts

    Get PDF
    We study the microstructural glass transitions in diblock-copolymer melts using a thermodynamic replica approach. Our approach performs an expansion in terms of the natural smallness parameter -- the inverse of the scaled degree of polymerization, which allows us to systematically study the approach to mean-field behavior as the degree of polymerization increases. We find that in the limit of infinite long polymer chains, both the onset of glassiness and the vitrification transition (Kauzmann temperature) collapse to the mean-field spinodal, suggesting that the spinodal can be regarded as the mean-field signature for glass transitions in this class of systems. We also study the order-disorder transitions (ODT) within the same theoretical framework; in particular, we include the leading-order fluctuation corrections due to the cubic interaction in the coarse-grained Hamiltonian, which has been ignored in previous works on the ODT in block copolymers. We find that the cubic term stabilizes both the ordered (body-centered-cubic) phase and the glassy state relative to the disordered phase. While in melts of symmetric copolymers the glass transition always occurs after the order-disorder transition (below the ODT temperature), for asymmetric copolymers, it is possible that the glass transition precedes the ordering transition.Comment: An error corrected in the referenc

    Electron-hydrogen scattering in Faddeev-Merkuriev integral equation approach

    Get PDF
    Electron-hydrogen scattering is studied in the Faddeev-Merkuriev integral equation approach. The equations are solved by using the Coulomb-Sturmian separable expansion technique. We present SS- and PP-wave scattering and reactions cross sections up to the H(n=4)H(n=4) threshold.Comment: 2 eps figure

    Learning a Mixture of Deep Networks for Single Image Super-Resolution

    Full text link
    Single image super-resolution (SR) is an ill-posed problem which aims to recover high-resolution (HR) images from their low-resolution (LR) observations. The crux of this problem lies in learning the complex mapping between low-resolution patches and the corresponding high-resolution patches. Prior arts have used either a mixture of simple regression models or a single non-linear neural network for this propose. This paper proposes the method of learning a mixture of SR inference modules in a unified framework to tackle this problem. Specifically, a number of SR inference modules specialized in different image local patterns are first independently applied on the LR image to obtain various HR estimates, and the resultant HR estimates are adaptively aggregated to form the final HR image. By selecting neural networks as the SR inference module, the whole procedure can be incorporated into a unified network and be optimized jointly. Extensive experiments are conducted to investigate the relation between restoration performance and different network architectures. Compared with other current image SR approaches, our proposed method achieves state-of-the-arts restoration results on a wide range of images consistently while allowing more flexible design choices. The source codes are available in http://www.ifp.illinois.edu/~dingliu2/accv2016
    corecore