86 research outputs found

    Simultaneously Retrofit of Heat Exchanger Networks and Towers for a Natural Gas Purification Plant

    Get PDF
    As an essential part of Heat Integration, the heat exchanger network (HEN) plays a vital role in large-scale industrial fields. The optimisation of HEN can increase energy efficiency and considerably save the operating and investment cost of the project. This study presents a novel approach for simultaneous optimisation of plant operating variables and the HEN structure of an existing natural gas purification process. The objective function is the total energy consumption of the studied process. A two-stage method is developed for optimisation. In the first stage, a particle swarm optimisation (PSO) algorithm is developed to optimise variables including tower top pressure, tower bottom pressure, and reflux ratio on the HEN, thereby changing the initial temperatures of cold and hot streams in the HEN. In the second stage, a shifted retrofit thermodynamic grid diagram (SRTGD)-based model and the corresponding solving algorithm was applied to retrofit the HEN. The case study shows that the optimal operating conditions of towers and temperature spans of heat exchangers can be solved by the proposed method to reduce the total energy consumption. The case study shows that the total energy consumption is reduced by 41.5 %

    Simulation and Experimental Study on Cuttings-Carrying for Reverse Circulation Horizontal Directional Drilling with Dual Drill Pipes

    Get PDF
    In the past decades, horizontal directional drilling (HDD) has been successfully used to install various pipelines in different strata. However, construction accidents such as drill-burying and drill-sticking occur occasionally when pipelines installed by HDD method in an unstable stratum such as sand cobble stratum. Recently, HDD with dual drill pipes was used to install pipelines in unstable stratum, and the effect is significant. The law of cuttings migration for HDD with dual drill pipes is still unclear. Therefore, it is necessary to study the law of cuttings migration in reverse circulation with dual drill pipes. This study performs numerical simulations and experimental research on the cuttings-carrying process in reverse circulation directional drilling with dual drill pipes. Based on the assumption of dual concentric pipes, simulations of fluid-solid two-phase flows are conducted in different flow channels between the inner and outer drill pipes. An experimental cuttings-carrying model is then established. By combining the results of the numerical simulations and experimental investigation, the hydraulic parameters of the dual drill pipe system are optimized, and the rationalities of the drill tool design and the grading selection are validated. The results of this study provide a reference cuttings-carrying model during reverse circulation HDD with dual drill pipes. Document type: Articl

    1xN Pattern for Pruning Convolutional Neural Networks

    Full text link
    Though network pruning receives popularity in reducing the complexity of convolutional neural networks (CNNs), it remains an open issue to concurrently maintain model accuracy as well as achieve significant speedups on general CPUs. In this paper, we propose a novel 1xN pruning pattern to break this limitation. In particular, consecutive N output kernels with the same input channel index are grouped into one block, which serves as a basic pruning granularity of our pruning pattern. Our 1xN pattern prunes these blocks considered unimportant. We also provide a workflow of filter rearrangement that first rearranges the weight matrix in the output channel dimension to derive more influential blocks for accuracy improvements and then applies similar rearrangement to the next-layer weights in the input channel dimension to ensure correct convolutional operations. Moreover, the output computation after our 1xN pruning can be realized via a parallelized block-wise vectorized operation, leading to significant speedups on general CPUs. The efficacy of our pruning pattern is proved with experiments on ILSVRC-2012. For example, Given the pruning rate of 50% and N=4, our pattern obtains about 3.0% improvements over filter pruning in the top-1 accuracy of MobileNet-V2. Meanwhile, it obtains 56.04ms inference savings on Cortex-A7 CPU over weight pruning. Our project is made available at https://github.com/lmbxmu/1xN

    Optimized hydrophobic magnetic nanoparticles stabilized pickering emulsion for enhanced oil recovery in complex porous media of reservoir

    Get PDF
    With an extensive application of flooding technologies in oil recovery, traditional emulsion flooding has seen many limits due to its poor stability and easy demulsification. Pursuing a new robust emulsion plays a fundamental role in developing highly effective emulsion flooding technology. In this work, a novel Pickering emulsion with special magnetic nanoparticles Fe3O4@PDA@Si was designed and prepared. To disclose the flooding mechanism from magnetic nanoparticles, the physico-chemical characterization of Fe3O4@PDA@Si was systematically examined. Meanwhile, the flooding property of the constructed Pickering emulsion was evaluated on the basis of certain downhole conditions. The results showed that the synthesis of Fe3O4@PDA@Si nanoparticles was found to have a hydrophobic core-shell structure with a diameter of 30 nm. Pickering emulsions based on Fe3O4@PDA@Si nanoparticles at an oil-to-water ratio of 5:5, 50°C, the water separation rate was only 6% and the droplet diameter of the emulsion was approximately 15 μm in the ultra-depth-of-field microscope image. This demonstrates the excellent stability of Pickering emulsions and improves the problem of easy demulsification. We further discussed the oil displacement mechanism and enhanced oil recovery effect of this type of emulsion. The microscopic flooding experiment demonstrated that profile control of the Pickering emulsion played a more important role in enhanced recovery than emulsification denudation, with the emulsion system increasing oil recovery by 10.18% in the micro model. Core flooding experiments have established that the incremental oil recovery of the Pickering emulsion increases with decreasing core permeability, from 12.36% to 17.39% as permeability drops from 834.86 to 219.34 × 10−3 μm2. This new Pickering emulsion flooding system stabilized by Fe3O4@PDA@Si nanoparticles offers an option for enhanced oil recovery (EOR)

    Performance Study on Methanol Steam Reforming Rib Micro-Reactor with Waste Heat Recovery

    No full text
    Automobile exhaust heat recovery is considered to be an effective means to enhance fuel utilization. The catalytic production of hydrogen by methanol steam reforming is an attractive option for onboard mobile applications, due to its many advantages. However, the reformers of conventional packed bed type suffer from axial temperature gradients and cold spots resulting from severe limitations of mass and heat transfer. These disadvantages limit reformers to a low efficiency of catalyst utilization. A novel rib microreactor was designed for the hydrogen production from methanol steam reforming heated by automobile exhaust, and the effect of inlet exhaust and methanol steam on reactor performance was numerically analyzed in detail, with computational fluid dynamics. The results showed that the best operating parameters were the counter flow, water-to-alcohol (W/A) of 1.3, exhaust inlet velocity of 1.1 m/s, and exhaust inlet temperature of 773 K, when the inlet velocity and inlet temperature of the reactant were 0.1 m/s and 493 K, respectively. At this condition, a methanol conversion of 99.4% and thermal efficiency of 28% were achieved, together with a hydrogen content of 69.6%
    • …
    corecore