8,167 research outputs found

    Quantum Conductance of the Single Electron Transistor

    Full text link
    The quantum conductance of the single-electron tunneling (SET) transistor is investigated in this paper by the functional integral approach. The formalism is valid for arbitrary tunnel resistance of the junctions forming the SET transistor at any temperature. The path integrals are evaluated by the semiclassical method to yield an explicit non-perturbation form of the quantum conductance of the SET transistor. An anomaly of the quantum conductance is found if the tunnel resistances are much smaller than the quantum resistance. The dependence of the conductance on the gate voltage is also discussed.Comment: 4 pages including some mathe details of cond-mat/990806

    Charging Ultrasmall Tunnel Junctions in Electromagnetic Environment

    Full text link
    We have investigated the quantum admittance of an ultrasmall tunnel junction with arbitrary tunneling strength under an electromagnetic environment. Using the functional integral approach a close analytical expression of the quantum admittance is derived for a general electromagnetic environment. We then consider a specific controllable environment where a resistance is connected in series with the tunneling junction, for which we derived the dc quantum conductance from the zero frequency limit of the imaginary part of the quantum admittance. For such electromagnetic environment the dc conductance has been investigated in recent experiments, and our numerical results agree quantitatively very well with the measurements. Our complete numerical results for the entire range of junction conductance and electromagnetic environmental conductance confirmed the few existing theoretical conclusions.Comment: 7 pages, 3 ps-figure

    Superresolution observed from evanescent waves transmitted through nano-corrugated metallic films

    Full text link
    Plane EM waves transmitted through nano-corrugated metallic thin films produce evanescent waves which include the information on the nano-structures. The production of the evanescent waves at the metallic surface are analyzed. A microsphere located above the metallic surface collects the evanescent waves which are converted into propagating waves. The equations for the refraction at the boundary of the microsphere and the use of Snell's law for evanescent waves are developed. The magnification of the nano-structure images is explained by a geometric optics description, but the high resolution is related to the evanescent waves properties.Comment: 12 page

    A study on the anomaly of pp over π\pi ratios in Au+AuAu+Au collisions with jet quenching

    Full text link
    The ratios of p/πp/\pi at large transverse momentum in central Au+AuAu+Au collisions at RHIC are studied in the framework of jet quenching based on a next-to-leading order pQCD parton model. It is shown that theoretical calculations with a gluon energy loss larger than the quark energy loss will naturally lead to a smaller p/πp/\pi ratios at large transverse momentum in Au+AuAu+Au collisions than those in p+pp+p collisions at the same energy. Scenarios with equal energy losses for gluons and quarks and a strong jet conversion are both explored and it is demonstrated in both scenarios p/πp/\pi ratios at high pTp_T in central Au+AuAu+Au collisions are enhanced and the calculated ratios of protons over pions approach to the experimental measurements. However, pˉ/p{\bar p}/p in the latter scenario is found to fit data better than that in the former scenario.Comment: 20 pages, 13 figures; revised version; accepted for publication in Journal of Physics

    Study of relativistic nuclear collisions at AGS energies from p+Be to Au+Au with hadronic cascade model

    Get PDF
    A hadronic cascade model based on resonances and strings is used to study mass dependence of relativistic nuclear collisions from p+Be to Au+Au at AGS energies (\sim 10\AGeV) systematically. Hadron transverse momentum and rapidity distributions obtained with both cascade calculations and Glauber type calculations are compared with experimental data to perform detailed discussion about the importance of rescattering among hadrons. We find good agreement with the experimental data without any change of model parameters with the cascade model. It is found that rescattering is of importance both for the explanation of high transverse momentum tail and for the multiplicity of produced particles.Comment: 27 pages, 30 figure
    corecore