259,269 research outputs found

    Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges

    Full text link
    As a promising paradigm for fifth generation (5G) wireless communication systems, cloud radio access networks (C-RANs) have been shown to reduce both capital and operating expenditures, as well as to provide high spectral efficiency (SE) and energy efficiency (EE). The fronthaul in such networks, defined as the transmission link between a baseband unit (BBU) and a remote radio head (RRH), requires high capacity, but is often constrained. This article comprehensively surveys recent advances in fronthaul-constrained C-RANs, including system architectures and key techniques. In particular, key techniques for alleviating the impact of constrained fronthaul on SE/EE and quality of service for users, including compression and quantization, large-scale coordinated processing and clustering, and resource allocation optimization, are discussed. Open issues in terms of software-defined networking, network function virtualization, and partial centralization are also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin note: text overlap with arXiv:1407.3855 by other author

    Exclusive processes e+eVPe^+e^-\to VP in kTk_T factorization

    Get PDF
    The exclusive processes e+eVPe^+e^-\to VP, in the region of which the final state meson momentum is much larger than the hadronic scale ΛQCD\Lambda_{QCD}, are studied in the framework of PQCD approach based on the kTk_T factorization. Including the transverse momentum distribution in the light cone wave functions, our results are consistent with the experimental measurements. According to our results, many processes have large enough cross sections to be detected at s=10.58\sqrt s=10.58 GeV. The ss dependence of the cross section has been directly studied and our result indicates that the 1/s31/s^3 scaling is more favored than 1/s41/s^4. We also find that the gluonic contribution for the processes involving η()\eta^{(')} is tiny.Comment: 17 pages, including 5 figures, Revtex

    Likelihood Analysis of Repeating in the BATSE Catalogue

    Get PDF
    I describe a new likelihood technique, based on counts-in-cells statistics, that I use to analyze repeating in the BATSE 1B and 2B catalogues. Using the 1B data, I find that repeating is preferred over non-repeating by 4.3:1 odds, with a well-defined peak at 5-6 repetitions per source. I find that the post-1B data are consistent with the repeating model inferred from the 1B data, after taking into account the lower fraction of bursts with well-determined positions. Combining the two data sets, I find that the odds favoring repeating over non-repeating are almost unaffected at 4:1, with a narrower peak at 5 repetitions per source. I conclude that the data sets are consistent both with each other and with repeating, and that for these data sets the odds favor repeating.Comment: 5 pages including 3 encapsulated figures, as a uuencoded, gzipped, Postscript file. To appear in Proc. of the 1995 La Jolla workshop ``High Velocity Neutron Stars and Gamma-Ray Bursts'' eds. Rothschild, R. et al., AIP, New Yor

    Twenty Years of Searching for (and Finding) Globular Cluster Pulsars

    Full text link
    Globular clusters produce orders of magnitude more millisecond pulsars per unit mass than the Galactic disk. Since the first cluster pulsar was uncovered twenty years ago, at least 138 have been identified - most of which are binary millisecond pulsars. Because of their origins involving stellar encounters, many of these systems are exotic objects that would never be observed in the Galactic disk. Examples include pulsar-main sequence binaries, extremely rapid rotators (including the current record holder), and millisecond pulsars in highly eccentric orbits. These systems are allowing new probes of the interstellar medium, the equation of state of material at supra-nuclear density, the mass distribution of neutron stars, and the dynamics of globular clusters.Comment: 9 pages, 6 figures. Submitted review for the "40 Years of Pulsars" conference in Montreal, Aug 2007. To be published by the AI

    Optimal CUR Matrix Decompositions

    Full text link
    The CUR decomposition of an m×nm \times n matrix AA finds an m×cm \times c matrix CC with a subset of c<nc < n columns of A,A, together with an r×nr \times n matrix RR with a subset of r<mr < m rows of A,A, as well as a c×rc \times r low-rank matrix UU such that the matrix CURC U R approximates the matrix A,A, that is, ACURF2(1+ϵ)AAkF2 || A - CUR ||_F^2 \le (1+\epsilon) || A - A_k||_F^2, where .F||.||_F denotes the Frobenius norm and AkA_k is the best m×nm \times n matrix of rank kk constructed via the SVD. We present input-sparsity-time and deterministic algorithms for constructing such a CUR decomposition where c=O(k/ϵ)c=O(k/\epsilon) and r=O(k/ϵ)r=O(k/\epsilon) and rank(U)=k(U) = k. Up to constant factors, our algorithms are simultaneously optimal in c,r,c, r, and rank(U)(U).Comment: small revision in lemma 4.

    Tuning orbital-selective correlation effects in superconducting Rb0.75_{0.75}Fe1.6_{1.6}Se2z_{2-z}Sz_z

    Full text link
    We report on terahertz time-domain spectroscopy on superconducting and metallic iron chalcogenides Rb0.75_{0.75}Fe1.6_{1.6}Se2z_{2-z}Sz_z. The superconducting transition is reduced from Tc=T_c= 32 K (z=0z=0) to 22 K (z=1.0z=1.0), and finally suppressed (z=1.4z=1.4) by isoelectronic substitution of Se with S. Dielectric constant and optical conductivity exhibit a metal-to-insulator transition associated with an orbital-selective Mott phase. This orbital-selective Mott transition appears at higher temperature TmetT_{met} with increasing sulfur content, identifying sulfur substitution as an efficient parameter to tune orbital-dependent correlation effects in iron-chalcogenide superconductors. The reduced correlations of the dxyd_{xy} charge carriers can account for the suppression of the superconductivity and the pseudogap-like feature between TcT_c and TmetT_{met} that was observed for z=0z=0.Comment: 6 pages, 4 figure

    A Search for Single Radio Pulses and Bursts from Southern AXPs

    Get PDF
    We observed four southern AXPs in 1999 near 1400 MHz with the Parkes 64-m radio telescope to search for periodic radio emission. No Fourier candidates were discovered in the initial analysis, but the recent radio activity observed for the AXP XTE J1810-197 has prompted us to revisit these data to search for single radio pulses and bursts. The data were searched for both persistent and bursting radio emission at a wide range of dispersion measures, but no detections of either kind were made. These results further weaken the proposed link between rotating radio transient sources and magnetars. However, continued radio searches of these and other AXPs at different epochs are warranted given the transient nature of the radio emission seen from XTE J1810-197, which until very recently was the only known radio-emitting AXP.Comment: 3 pages, including 1 table. To appear in the proceedings of "40 Years of Pulsars: Millisecond Pulsars, Magnetars, and More", August 12-17, 2007, McGill University, Montreal, Canad

    A homogeneous analysis of disks around brown dwarfs

    Full text link
    We re-analyzed the Herschel/PACS data of a sample of 55 brown dwarfs (BDs) and very low mass stars with spectral types ranging from M5.5 to L0. We investigated the dependence of disk structure on the mass of the central object in the substellar regime based on a homogeneous analysis of Herschel data from flux density measurements to spectral energy distribution (SED) modeling. A systematic comparison between the derived disk properties and those of sun-like stars shows that the disk flaring of BDs and very low mass stars is generally smaller than that of their higher mass counterparts, the disk mass is orders of magnitude lower than the typical value found in T Tauri stars, and the disk scale heights are comparable in both sun-like stars and BDs. We further divided our sample into an early-type brown dwarf (ETBD) group and a late-type brown dwarf (LTBD) group by using spectral type (=M8) as the border criterion. We systematically compared the modeling results from Bayesian analysis between these two groups, and found the trends of flaring index as a function of spectral type also present in the substellar regime. The spectral type independence of the scale height is also seen between high-mass and very low-mass BDs. However, both the ETBD and LTBD groups feature a similar median disk mass of 10^{-5}Msun and no clear trend is visible in the distribution, probably due to the uncertainty in translating the far-IR photometry into disk mass, the detection bias and the age difference among the sample. Unlike previous studies, our analysis is completely homogeneous in Herschel/PACS data reduction and modeling with a statistically significant sample. Therefore, we present evidence of stellar-mass-dependent disk structure down to the substellar mass regime, which is important for planet formation models. (Abridged Version)Comment: Accepted for publication in A&

    Implementation of universal quantum gates based on nonadiabatic geometric phases

    Get PDF
    We propose an experimentally feasible scheme to achieve quantum computation based on nonadiabatic geometric phase shifts, in which a cyclic geometric phase is used to realize a set of universal quantum gates. Physical implementation of this set of gates is designed for Josephson junctions and for NMR systems. Interestingly, we find that the nonadiabatic phase shift may be independent of the operation time under appropriate controllable conditions. A remarkable feature of the present nonadiabatic geometric gates is that there is no intrinsic limitation on the operation time, unlike adiabatic geometric gates. Besides fundamental interest, our results may simplify the implementation of geometric quantum computation based on solid state systems, where the decoherence time may be very short.Comment: 5 pages, 2 figures; the version published in Phys. Rev. Let
    corecore