259,269 research outputs found
Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges
As a promising paradigm for fifth generation (5G) wireless communication
systems, cloud radio access networks (C-RANs) have been shown to reduce both
capital and operating expenditures, as well as to provide high spectral
efficiency (SE) and energy efficiency (EE). The fronthaul in such networks,
defined as the transmission link between a baseband unit (BBU) and a remote
radio head (RRH), requires high capacity, but is often constrained. This
article comprehensively surveys recent advances in fronthaul-constrained
C-RANs, including system architectures and key techniques. In particular, key
techniques for alleviating the impact of constrained fronthaul on SE/EE and
quality of service for users, including compression and quantization,
large-scale coordinated processing and clustering, and resource allocation
optimization, are discussed. Open issues in terms of software-defined
networking, network function virtualization, and partial centralization are
also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin
note: text overlap with arXiv:1407.3855 by other author
Exclusive processes in factorization
The exclusive processes , in the region of which the final
state meson momentum is much larger than the hadronic scale ,
are studied in the framework of PQCD approach based on the factorization.
Including the transverse momentum distribution in the light cone wave
functions, our results are consistent with the experimental measurements.
According to our results, many processes have large enough cross sections to be
detected at GeV. The dependence of the cross section has
been directly studied and our result indicates that the scaling is more
favored than . We also find that the gluonic contribution for the
processes involving is tiny.Comment: 17 pages, including 5 figures, Revtex
Likelihood Analysis of Repeating in the BATSE Catalogue
I describe a new likelihood technique, based on counts-in-cells statistics,
that I use to analyze repeating in the BATSE 1B and 2B catalogues. Using the 1B
data, I find that repeating is preferred over non-repeating by 4.3:1 odds, with
a well-defined peak at 5-6 repetitions per source. I find that the post-1B data
are consistent with the repeating model inferred from the 1B data, after taking
into account the lower fraction of bursts with well-determined positions.
Combining the two data sets, I find that the odds favoring repeating over
non-repeating are almost unaffected at 4:1, with a narrower peak at 5
repetitions per source. I conclude that the data sets are consistent both with
each other and with repeating, and that for these data sets the odds favor
repeating.Comment: 5 pages including 3 encapsulated figures, as a uuencoded, gzipped,
Postscript file. To appear in Proc. of the 1995 La Jolla workshop ``High
Velocity Neutron Stars and Gamma-Ray Bursts'' eds. Rothschild, R. et al.,
AIP, New Yor
Twenty Years of Searching for (and Finding) Globular Cluster Pulsars
Globular clusters produce orders of magnitude more millisecond pulsars per
unit mass than the Galactic disk. Since the first cluster pulsar was uncovered
twenty years ago, at least 138 have been identified - most of which are binary
millisecond pulsars. Because of their origins involving stellar encounters,
many of these systems are exotic objects that would never be observed in the
Galactic disk. Examples include pulsar-main sequence binaries, extremely rapid
rotators (including the current record holder), and millisecond pulsars in
highly eccentric orbits. These systems are allowing new probes of the
interstellar medium, the equation of state of material at supra-nuclear
density, the mass distribution of neutron stars, and the dynamics of globular
clusters.Comment: 9 pages, 6 figures. Submitted review for the "40 Years of Pulsars"
conference in Montreal, Aug 2007. To be published by the AI
Optimal CUR Matrix Decompositions
The CUR decomposition of an matrix finds an
matrix with a subset of columns of together with an matrix with a subset of rows of as well as a
low-rank matrix such that the matrix approximates the matrix
that is, , where
denotes the Frobenius norm and is the best matrix
of rank constructed via the SVD. We present input-sparsity-time and
deterministic algorithms for constructing such a CUR decomposition where
and and rank. Up to constant
factors, our algorithms are simultaneously optimal in and rank.Comment: small revision in lemma 4.
Tuning orbital-selective correlation effects in superconducting RbFeSeS
We report on terahertz time-domain spectroscopy on superconducting and
metallic iron chalcogenides RbFeSeS. The
superconducting transition is reduced from 32 K () to 22 K
(), and finally suppressed () by isoelectronic substitution of Se
with S. Dielectric constant and optical conductivity exhibit a
metal-to-insulator transition associated with an orbital-selective Mott phase.
This orbital-selective Mott transition appears at higher temperature
with increasing sulfur content, identifying sulfur substitution as an efficient
parameter to tune orbital-dependent correlation effects in iron-chalcogenide
superconductors. The reduced correlations of the charge carriers can
account for the suppression of the superconductivity and the pseudogap-like
feature between and that was observed for .Comment: 6 pages, 4 figure
A Search for Single Radio Pulses and Bursts from Southern AXPs
We observed four southern AXPs in 1999 near 1400 MHz with the Parkes 64-m
radio telescope to search for periodic radio emission. No Fourier candidates
were discovered in the initial analysis, but the recent radio activity observed
for the AXP XTE J1810-197 has prompted us to revisit these data to search for
single radio pulses and bursts. The data were searched for both persistent and
bursting radio emission at a wide range of dispersion measures, but no
detections of either kind were made. These results further weaken the proposed
link between rotating radio transient sources and magnetars. However, continued
radio searches of these and other AXPs at different epochs are warranted given
the transient nature of the radio emission seen from XTE J1810-197, which until
very recently was the only known radio-emitting AXP.Comment: 3 pages, including 1 table. To appear in the proceedings of "40 Years
of Pulsars: Millisecond Pulsars, Magnetars, and More", August 12-17, 2007,
McGill University, Montreal, Canad
A homogeneous analysis of disks around brown dwarfs
We re-analyzed the Herschel/PACS data of a sample of 55 brown dwarfs (BDs)
and very low mass stars with spectral types ranging from M5.5 to L0. We
investigated the dependence of disk structure on the mass of the central object
in the substellar regime based on a homogeneous analysis of Herschel data from
flux density measurements to spectral energy distribution (SED) modeling. A
systematic comparison between the derived disk properties and those of sun-like
stars shows that the disk flaring of BDs and very low mass stars is generally
smaller than that of their higher mass counterparts, the disk mass is orders of
magnitude lower than the typical value found in T Tauri stars, and the disk
scale heights are comparable in both sun-like stars and BDs. We further divided
our sample into an early-type brown dwarf (ETBD) group and a late-type brown
dwarf (LTBD) group by using spectral type (=M8) as the border criterion. We
systematically compared the modeling results from Bayesian analysis between
these two groups, and found the trends of flaring index as a function of
spectral type also present in the substellar regime. The spectral type
independence of the scale height is also seen between high-mass and very
low-mass BDs. However, both the ETBD and LTBD groups feature a similar median
disk mass of 10^{-5}Msun and no clear trend is visible in the distribution,
probably due to the uncertainty in translating the far-IR photometry into disk
mass, the detection bias and the age difference among the sample. Unlike
previous studies, our analysis is completely homogeneous in Herschel/PACS data
reduction and modeling with a statistically significant sample. Therefore, we
present evidence of stellar-mass-dependent disk structure down to the
substellar mass regime, which is important for planet formation models.
(Abridged Version)Comment: Accepted for publication in A&
Implementation of universal quantum gates based on nonadiabatic geometric phases
We propose an experimentally feasible scheme to achieve quantum computation
based on nonadiabatic geometric phase shifts, in which a cyclic geometric phase
is used to realize a set of universal quantum gates. Physical implementation of
this set of gates is designed for Josephson junctions and for NMR systems.
Interestingly, we find that the nonadiabatic phase shift may be independent of
the operation time under appropriate controllable conditions. A remarkable
feature of the present nonadiabatic geometric gates is that there is no
intrinsic limitation on the operation time, unlike adiabatic geometric gates.
Besides fundamental interest, our results may simplify the implementation of
geometric quantum computation based on solid state systems, where the
decoherence time may be very short.Comment: 5 pages, 2 figures; the version published in Phys. Rev. Let
- …
