55,056 research outputs found
New Insights on Low Energy Scattering Amplitudes
The - and - wave phase shifts of low-energy pion-nucleon scatterings
are analysed using Peking University representation, in which they are
decomposed into various terms contributing either from poles or branch cuts. We
estimate the left-hand cut contributions with the help of tree-level
perturbative amplitudes derived in relativistic baryon chiral perturbation
theory up to . It is found that in and
channels, contributions from known resonances and cuts are far from enough to
saturate experimental phase shift data -- strongly indicating contributions
from low lying poles undiscovered before, and we fully explore possible physics
behind. On the other side, no serious disagreements are observed in the other
channels.Comment: slightly chnaged version, a few more figures added. Physical
conclusions unchange
Tuning a binary ferromagnet into a multi-state synapse with spin-orbit torque induced plasticity
Inspired by ion-dominated synaptic plasticity in human brain, artificial
synapses for neuromorphic computing adopt charge-related quantities as their
weights. Despite the existing charge derived synaptic emulations, schemes of
controlling electron spins in ferromagnetic devices have also attracted
considerable interest due to their advantages of low energy consumption,
unlimited endurance, and favorable CMOS compatibility. However, a generally
applicable method of tuning a binary ferromagnet into a multi-state memory with
pure spin-dominated synaptic plasticity in the absence of an external magnetic
field is still missing. Here, we show how synaptic plasticity of a
perpendicular ferromagnetic FM1 layer can be obtained when it is
interlayer-exchange-coupled by another in-plane ferromagnetic FM2 layer, where
a magnetic-field-free current-driven multi-state magnetization switching of FM1
in the Pt/FM1/Ta/FM2 structure is induced by spin-orbit torque. We use current
pulses to set the perpendicular magnetization state which acts as the synapse
weight, and demonstrate spintronic implementation of the excitatory/inhibitory
postsynaptic potentials and spike timing-dependent plasticity. This
functionality is made possible by the action of the in-plane interlayer
exchange coupling field which leads to broadened, multi-state magnetic reversal
characteristics. Numerical simulations, combined with investigations of a
reference sample with a single perpendicular magnetized Pt/FM1/Ta structure,
reveal that the broadening is due to the in-plane field component tuning the
efficiency of the spin-orbit-torque to drive domain walls across a landscape of
varying pinning potentials. The conventionally binary FM1 inside our
Pt/FM1/Ta/FM2 structure with inherent in-plane coupling field is therefore
tuned into a multi-state perpendicular ferromagnet and represents a synaptic
emulator for neuromorphic computing.Comment: 37 pages with 11 figures, including 20 pages for manuscript and 17
pages for supplementary informatio
- …