4,085 research outputs found

    Quantum Corrals and Quantum Mirages on the Surface of a Topological Insulator

    Full text link
    We study quantum corrals on the surface of a topological insulator (TI). Different resonance states induced by nonmagnetic (NM), antiferromagnetic (AFM), and ferromagnetic (FM) corrals are found. Intriguingly, the spin is clearly energy-resolved in a FM corral, which can be effectively used to operate surface carrier spins of TI. We also show that an observable quantum mirage of a magnetic impurity can be projected from the occupied into the empty focus of a FM elliptic corral, while in NM and AFM corrals the mirage signal becomes negligibly weak. In addition, the modulation of the interaction between two magnetic impurities in the quantum corrals is demonstrated. These prominent effects may be measured by spin-polarized STM experiments.Comment: 5 PRB pages, 4 figure

    Effect of temperature on microstructure and deformation mechanism of Fe-30Mn-3Si-4Al TWIP steel at strain rate of 700 s-1

    Get PDF
    As twinning-induced plasticity (TWIP) steel is one potential material for shaped charge liner due to the combination of high strength and high plasticity, deformation mechanism at high strain rate and high temperature is required to study. Compression experiments of Fe-30Mn-3Si-4Al TWIP steel were conducted using a Gleeble-1500 thermal simulation machine and a split-Hopkinson pressure bar (SHPB) between 298 and 1073 K at strain rates of 10-3 and 700 s-1, respectively. Microstructures were observed using optical microscopy (OM) and transmission electron microscopy (TEM). Results show that flow stress and densities of deformation twins and dislocations decrease with increasing deformation temperature at strain rates of 10-3 and 700 s-1. The stack fault energy (SFE) values (Γ) of Fe-30Mn-3Si-4Al TWIP steel at different temperatures were calculated using thermodynamic data. Based on corresponding microstructures, it can be inferred that at 700 s-1, twinning is the main deformation mechanism at 298-573 K for 30 mJ/m2≤Γ≤63 mJ/m, while dislocation gliding is the main deformation mechanism above 1073 K for Γ≥ 145 mJ/m2. In addition, with increasing strain rate from 10-3 to 700 s-1, the SFE range of twinning is enlarged and the SEF value of twinning becomes higher

    4-Methyl-1,3-bis­(3,4-methyl­enedioxy­benz­yl)-2-(3,4-methyl­enedioxy­phen­yl)imidazolidine

    Get PDF
    In the title compound, C27H26N2O6, the imidazolidine ring adopts an envelope conformation. The methyl group on the imidazolidine ring is disordered over two positions with occupancies of 0.517 (11) and 0.483 (11), and the 3,4-methyl­enedioxy­phenyl at the 3-position of imidazolidine ring is also disordered over two positions with occupancies of 0.60 (2) and 0.40 (2)
    corecore