4,818 research outputs found
Entrainment and chaos in a pulse-driven Hodgkin-Huxley oscillator
The Hodgkin-Huxley model describes action potential generation in certain
types of neurons and is a standard model for conductance-based, excitable
cells. Following the early work of Winfree and Best, this paper explores the
response of a spontaneously spiking Hodgkin-Huxley neuron model to a periodic
pulsatile drive. The response as a function of drive period and amplitude is
systematically characterized. A wide range of qualitatively distinct responses
are found, including entrainment to the input pulse train and persistent chaos.
These observations are consistent with a theory of kicked oscillators developed
by Qiudong Wang and Lai-Sang Young. In addition to general features predicted
by Wang-Young theory, it is found that most combinations of drive period and
amplitude lead to entrainment instead of chaos. This preference for entrainment
over chaos is explained by the structure of the Hodgkin-Huxley phase resetting
curve.Comment: Minor revisions; modified Fig. 3; added reference
Mobility-Induced Service Migration in Mobile Micro-Clouds
Mobile micro-cloud is an emerging technology in distributed computing, which
is aimed at providing seamless computing/data access to the edge of the network
when a centralized service may suffer from poor connectivity and long latency.
Different from the traditional cloud, a mobile micro-cloud is smaller and
deployed closer to users, typically attached to a cellular basestation or
wireless network access point. Due to the relatively small coverage area of
each basestation or access point, when a user moves across areas covered by
different basestations or access points which are attached to different
micro-clouds, issues of service performance and service migration become
important. In this paper, we consider such migration issues. We model the
general problem as a Markov decision process (MDP), and show that, in the
special case where the mobile user follows a one-dimensional asymmetric random
walk mobility model, the optimal policy for service migration is a threshold
policy. We obtain the analytical solution for the cost resulting from arbitrary
thresholds, and then propose an algorithm for finding the optimal thresholds.
The proposed algorithm is more efficient than standard mechanisms for solving
MDPs.Comment: in Proc. of IEEE MILCOM 2014, Oct. 201
Differential neuroproteomic and systems biology analysis of spinal cord injury
Acute spinal cord injury (SCI) is a devastating condition with many consequences and no known effective treatment. Although it is quite easy to diagnose traumatic SCI, the assessment of injury severity and projection of disease progression or recovery are often challenging, as no consensus biomarkers have been clearly identified. Here rats were subjected to experimental moderate or severe thoracic SCI. At 24h and 7d postinjury, spinal cord segment caudal to injury center versus sham samples was harvested and subjected to differential proteomic analysis. Cationic/anionic-exchange chromatography, followed by 1D polyacrylamide gel electrophoresis, was used to reduce protein complexity. A reverse phase liquid chromatography-tandem mass spectrometry proteomic platform was then utilized to identify proteome changes associated with SCI. Twenty-two and 22 proteins were up-regulated at 24 h and 7 day after SCI, respectively; whereas 19 and 16 proteins are down-regulated at 24 h and 7 day after SCI, respectively, when compared with sham control. A subset of 12 proteins were identified as candidate SCI biomarkers - TF (Transferrin), FASN (Fatty acid synthase), NME1 (Nucleoside diphosphate kinase 1), STMN1 (Stathmin 1), EEF2 (Eukaryotic translation elongation factor 2), CTSD (Cathepsin D), ANXA1 (Annexin A1), ANXA2 (Annexin A2), PGM1 (Phosphoglucomutase 1), PEA15 (Phosphoprotein enriched in astrocytes 15), GOT2 (Glutamic-oxaloacetic transaminase 2), and TPI-1 (Triosephosphate isomerase 1), data are available via ProteomeXchange with identifier PXD003473. In addition, Transferrin, Cathepsin D, and TPI-1 and PEA15 were further verified in rat spinal cord tissue and/or CSF samples after SCI and in human CSF samples from moderate/severe SCI patients. Lastly, a systems biology approach was utilized to determine the critical biochemical pathways and interactome in the pathogenesis of SCI. Thus, SCI candidate biomarkers identified can be used to correlate with disease progression or to identify potential SCI therapeutic targets
Identification of H3K4me1-associated proteins at mammalian enhancers.
Enhancers act to regulate cell-type-specific gene expression by facilitating the transcription of target genes. In mammalian cells, active or primed enhancers are commonly marked by monomethylation of histone H3 at lysine 4 (H3K4me1) in a cell-type-specific manner. Whether and how this histone modification regulates enhancer-dependent transcription programs in mammals is unclear. In this study, we conducted SILAC mass spectrometry experiments with mononucleosomes and identified multiple H3K4me1-associated proteins, including many involved in chromatin remodeling. We demonstrate that H3K4me1 augments association of the chromatin-remodeling complex BAF to enhancers in vivo and that, in vitro, H3K4me1-marked nucleosomes are more efficiently remodeled by the BAF complex. Crystal structures of the BAF component BAF45C indicate that monomethylation, but not trimethylation, is accommodated by BAF45C's H3K4-binding site. Our results suggest that H3K4me1 has an active role at enhancers by facilitating binding of the BAF complex and possibly other chromatin regulators
A heuristic for the container loading problem: A tertiary-tree-based dynamic space decomposition approach
Increasing fuel costs, post-911 security concerns, and economic globalization provide a strong incentive for container carriers to use available container space more efficiently, thereby minimizing the number of container trips and reducing socio-economic vulnerability. A heuristic algorithm based on a tertiary tree model is proposed to handle the container loading problem (CLP) with weakly heterogeneous boxes. A dynamic space decomposition method based on the tertiary tree structure is developed to partition the remaining container space after a block of homogeneous rectangular boxes is loaded into a container. This decomposition approach, together with an optimal-fitting sequencing and an inner-right-corner-occupying placement rule, permits a holistic loading strategy to pack a container. Comparative studies with existing algorithms and an illustrative example demonstrate the efficiency of this algorithm
Universal manifold pairings and positivity
Gluing two manifolds M_1 and M_2 with a common boundary S yields a closed
manifold M. Extending to formal linear combinations x=Sum_i(a_i M_i) yields a
sesquilinear pairing p= with values in (formal linear combinations of)
closed manifolds. Topological quantum field theory (TQFT) represents this
universal pairing p onto a finite dimensional quotient pairing q with values in
C which in physically motivated cases is positive definite. To see if such a
"unitary" TQFT can potentially detect any nontrivial x, we ask if is
non-zero whenever x is non-zero. If this is the case, we call the pairing p
positive. The question arises for each dimension d=0,1,2,.... We find p(d)
positive for d=0,1, and 2 and not positive for d=4. We conjecture that p(3) is
also positive. Similar questions may be phrased for (manifold, submanifold)
pairs and manifolds with other additional structure. The results in dimension 4
imply that unitary TQFTs cannot distinguish homotopy equivalent simply
connected 4-manifolds, nor can they distinguish smoothly s-cobordant
4-manifolds. This may illuminate the difficulties that have been met by several
authors in their attempts to formulate unitary TQFTs for d=3+1. There is a
further physical implication of this paper. Whereas 3-dimensional Chern-Simons
theory appears to be well-encoded within 2-dimensional quantum physics, eg in
the fractional quantum Hall effect, Donaldson-Seiberg-Witten theory cannot be
captured by a 3-dimensional quantum system. The positivity of the physical
Hilbert spaces means they cannot see null vectors of the universal pairing;
such vectors must map to zero.Comment: Published by Geometry and Topology at
http://www.maths.warwick.ac.uk/gt/GTVol9/paper53.abs.htm
- …