4 research outputs found

    A Novel Nitridoborate Hydride Sr13[BN2]6H8 Elucidated from X‐ray and Neutron Diffraction Data

    Get PDF
    Metal hydrides are an uprising compound class bringing up various functional materials. Due to the low X-ray scattering power of hydrogen, neutron diffraction is often crucial to fully disclose the structural characteristics thereof. We herein present the second strontium nitridoborate hydride known so far, Sr13[BN2]6H8, formed in a solid-state reaction of the binary nitrides and strontium hydride at 950 °C. The crystal structure was elucidated based on single-crystal X-ray and neutron powder diffraction in the hexagonal space group P63/m (no. 176), exhibiting a novel three-dimensional network of [BN2]3− units and hydride anions connected by strontium cations. Further analyses with magic angle spinning (MAS) NMR and vibrational spectroscopy corroborate the presence of anionic hydrogen within the structure. Quantum chemical calculations reveal the electronic properties and support the experimental outcome. Sr13[BN2]6H8 expands the emerging family of nitridoborate hydrides, broadening the access to an open field of new, intriguing materials

    Combining Nitridoborates, Nitrides and Hydrides—Synthesis and Characterization of the Multianionic Sr6N[BN2]2H3

    Get PDF
    Multianionic metal hydrides, which exhibit a wide variety of physical properties and complex structures, have recently attracted growing interest. Here we present Sr6N[BN2]2H3, prepared in a solid-state ampoule reaction at 800 °C, as the first combination of nitridoborate, nitride and hydride anions within a single compound. The crystal structure was solved from single-crystal X-ray and neutron powder diffraction data in space group P21/c (no. 14), revealing a three-dimensional network of undulated layers of nitridoborate units, strontium atoms and hydride together with nitride anions. Magic angle spinning (MAS) NMR and vibrational spectroscopy in combination with quantum chemical calculations further confirm the structure model. Electrochemical measurements suggest the existence of hydride ion conductivity, allowing the hydrides to migrate along the layers

    Order and Disorder in Mixed (Si, P)–N Networks Sr2SiP2N6:Eu2+ and Sr5Si2P6N16:Eu2+

    Get PDF
    In the field of nitride phosphors, which are crucial for phosphor-converted light-emitting diodes, mixed tetrahedral networks hold a significant position. With respect to the wide range of compositions, the largely unexplored (Si, P)–N networks are investigated as potential host structures. In this work, two highly condensed structures, namely Sr2SiP2N6 and Sr5Si2P6N16 are reported to address the challenges that arise from the similarities of the network-forming cations Si4+ and P5+ in terms of charge, ionic radius, and atomic scattering factor, a multistep workflow is employed to elucidate their structure. Using single-crystal X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), atomic-resolution scanning transmission electron microscopy (STEM)-EDX maps, and straightforward crystallographic calculations, it is found that Sr2SiP2N6 is the first ordered, and Sr5Si2P6N16 the first disordered, anionic tetrahedral (Si, P)–N network. After doping with Eu2+, Sr2SiP2N6:Eu2+ shows narrow cyan emission (λmax = 506 nm, fwhm = 60 nm/2311 cm−1), while for Sr5Si2P6N16:Eu2+ a broad emission with three maxima at 534, 662, and 745 nm upon irradiation with ultraviolet light is observed. An assignment of Sr sites as probable positions for Eu2+ and their relation to the emission bands of Sr5Si2P6N16:Eu2+ is discussed

    Ba12[BN2]6.67H4: A Disordered Anti‐Skutterudite filled with Nitridoborate Anions

    Get PDF
    Skutterudites are of high interest in current research due to their diversity of structures comprising empty, partially filled and filled variants, mostly based on metallic compounds. We herein present Ba12[BN2]6.67H4, forming a non-metallic filled anti-skutterudite. It is accessed in a solid-state ampoule reaction from barium subnitride, boron nitride and barium hydride at 750 °C. Single-crystal X-ray and neutron powder diffraction data allowed to elucidate the structure in the cubic space group Imurn:x-wiley:14337851:media:anie202316469:anie202316469-math-0001 (no. 204). The barium and hydride atoms form a three-dimensional network consisting of corner-sharing HBa6 octahedra and Ba12 icosahedra. Slightly bent [BN2]3− units are located in the icosahedra and the voids in-between. 1H and 11B magic angle spinning (MAS) NMR experiments and vibrational spectroscopy further support the structure model. Quantum chemical calculations coincide well with experimental results and provide information about the electronic structure of Ba12[BN2]6.67H4
    corecore