5 research outputs found
Estimation of the Genetic Diversity and Population Structure of Thailand’s Rice Landraces Using SNP Markers
Rice is a staple food for more than half of the world’s population. Modern rice varieties have been developed for high yield and quality; however, there has been a substantial loss of diversity. A greater number of genetically dynamic landraces could offer valuable and useful genetic resources for rice improvement. In this study, the genetic diversity and population structure of 365 accessions of lowland and upland landraces from four populations from different geographical regions of Thailand were investigated using 75 SNP markers. Clustering analyses using maximum likelihood, Principal Coordinate Analysis (PCoA), and Discriminant Analysis of Principal Components (DAPC) clustered these landraces into two main groups, corresponding to indica and japonica groups. The indica group was further clustered into two subgroups according to the DAPC and STRUCTURE analyses (K = 3). The analysis of molecular variance (AMOVA) analysis results revealed that 91% of the variation was distributed among individuals, suggesting a high degree of genetic differentiation among rice accessions within the populations. Pairwise FST showed the greatest genetic differentiation between the northeastern and southern populations and the smallest genetic differentiation between the northern and northeastern populations. Isolation-by-distance analysis based on a Mantel test indicated a significant relationship between the genetic distance and geographic distance among the Thai rice landraces. The results from this study provide insight into the genetic diversity of Thai rice germplasm, which will enhance the germplasm characterization, conservation, and utilization in rice genetics and breeding
Primary Root Excision Induces ERF071, Which Mediates the Development of Lateral Roots in Makapuno Coconut (<i>Cocos nucifera</i>)
Coconut (Cocos nucifera L.) is widely recognized as one of nature’s most beneficial plants. Makapuno, a special type of coconut with a soft, jelly-like endosperm, is a high-value commercial coconut and an expensive delicacy with a high cost of planting material. The embryo rescue technique is a very useful tool to support mass propagation of makapuno coconut. Nevertheless, transplanting the seedlings is a challenge due to poor root development, which results in the inability of the plant to acclimatize. In this study, primary root excision was used in makapuno to observe the effects of primary root excision on lateral root development. The overall results showed that seedlings with roots excised had a significantly higher number of lateral roots, and shoot length also increased significantly. Using de novo transcriptome assembly and differential gene expression analysis, we identified 512 differentially expressed genes in the excised and intact root samples. ERF071, encoding an ethylene-responsive transcription factor, was identified as a highly expressed gene in excised roots compared to intact roots, and was considered a candidate gene associated with lateral root formation induced by root excision in makapuno coconut. This study provides insight into the mechanism and candidate genes involved in the development of lateral roots in coconut, which may be useful for the future breeding and mass propagation of makapuno coconut through tissue culture
Transcriptome Analysis Reveals Genes Involved in Responses of Eucalyptus to Gall Wasp Infestation
Leptocybe invasa is a gall wasp causing significant damage to Eucalyptus species. This study used RNA sequencing (RNA-seq) to identify differentially expressed genes (DEGs) associated with early L. invasa infestation in eucalyptus parents and their F1-progenies. A total of 14,648 significant DEGs were identified from U22-tolerant and C153-susceptible parents, and extremely tolerant and susceptible pools of their F1-progenies. A total of 324/632 and 182/205 DEGs specific for the tolerant group and the susceptible group were up-regulated, respectively. Expression analysis by qRT-PCR of the selected DEGs was comparable with the results of RNA-seq. Expression analysis of the selected genes using the top five progenies from each pool was consistent with that in the parents. Three genes (RCA, SUI1, GCN5) were up-regulated after infestation in all tested tolerant plants, suggesting their important roles in the tolerant phenotype. Using expression and STRING analysis, our results suggest that early response at three days after gall wasp infestation increased protein and terpenoid synthesis, and increased transportation of these molecules. In addition, wounding also increased photosynthesis and glycolysis. These processes involved the interaction of several plant hormones, such as JA, Auxin, and ABA. The information obtained from this study could be useful for future Eucalyptus breeding programs
Identification of Gene Associated with Sweetness in Corn (Zea mays L.) by Genome-Wide Association Study (GWAS) and Development of a Functional SNP Marker for Predicting Sweet Corn
Sweetness is an economically important eating quality trait for sweet-corn breeding. To investigate the genetic control of the sweetness trait, we conducted a genome-wide association study (GWAS) in an association panel consisting of 250 sweet corn and waxy corn inbred and recombinant inbred lines (RILs), together with the genotypes obtained from the high-density 600K maize genotyping single-nucleotide polymorphism (SNP) array. GWAS results identified 12 significantly associated SNPs on chromosomes 3, 4, 5, and 7. The most associated SNP, AX_91849634, was found on chromosome 3 with a highly significant p-value of ≤1.53 Ă— 10−14. The candidate gene identified within the linkage disequilibrium (LD) of this marker was shrunken2 (Zm00001d044129; sh2), which encodes ADP-glucose pyrophosphorylase (AGPase), a 60 kDa subunit enzyme that affects starch metabolism in the maize endosperm. Several SNP markers specific to variants in sh2 were developed and validated. According to the validation in a set of 81 inbred, RIL, and popular corn varieties, marker Sh2_rs844805326, which was developed on the basis of the SNP at the position 154 of exon 1, was highly efficient in classifying sh2-based sweet corn from other types of corn. This functional marker is extremely useful for marker-assisted breeding in sh2-sweet corn improvement and marketable seed production
Exploring the Genomic Landscape: A Comprehensive Analysis of the Genetic Diversity and Population Structure of Thai Tomato Germplasm through Whole-Genome Sequencing (WGS)
Tomatoes (Solanum lycopersicum L.) represent a valuable crop species cultivated on a global scale, with Thailand playing a notable role in Southeast Asia’s agricultural landscape. However, a comprehensive understanding of the genetic underpinnings, population dynamics, and genetic correlations among tomato cultivars within Thailand remains relatively nascent. This study conducted an extensive analysis of 283 tomato accessions sourced from Thailand’s largest germplasm repository, employing approximately 2.4 million single-nucleotide polymorphisms (SNPs) obtained through whole-genome sequencing (WGS). The results of the genetic diversity assessment demonstrate a consistent delineation of groups, as indicated by UPGMA clustering, revealing five distinct clusters, while population structure analysis unveils twelve subpopulations. These findings underscore the limited genetic reservoir within Thai tomato germplasm, providing valuable insights for germplasm management strategies and offering a promising avenue for the refinement of breeding programs aimed at enhancing tomato genetics