22,726 research outputs found

    Structure of the Ds0(2317)D_{s0}(2317) and the strong coupling constant gDs0DKg_{D_{s0} D K} with the light-cone QCD sum rules

    Full text link
    In this article, we take the point of view that the charmed scalar meson Ds0(2317)D_{s0}(2317) is the conventional csˉc\bar{s} meson and calculate the strong coupling constant gDs0DKg_{D_{s0} D K} within the framework of the light-cone QCD sum rules approach. The numerical values for the large scalar-DKDK coupling constant gDs0DKg_{D_{s0} D K} support the hadronic dressing mechanism. Just like the scalar mesons f0(980)f_0(980) and a0(980)a_0(980), the Ds0(2317)D_{s0}(2317) may have small scalar csˉc\bar{s} kernel of the typical csˉc\bar{s} meson size. The strong coupling to the hadronic channels (or the virtual mesons loops) may result in smaller mass than the conventional scalar csˉc\bar{s} meson in the constituent quark models, and enrich the pure csˉc\bar{s} state with other components. The Ds0(2317)D_{s0}(2317) may spend part (or most part) of its lifetime as virtual DK D K state.Comment: 17 pages, 7 figure, revised version, add detailed error analysi

    Calculation of some properties of the vacuum

    Get PDF
    In this article, we calculate the dressed quark propagator with the flat bottom potential in the framework of the rain-bow Schwinger-Dyson equation, which is determined by mean field approximation of the global colour model lagrangian. The dressed quark propagator exhibits a dynamical symmetry breaking phenomenon and gives a constituent quark mass about 392 MeV, which is close to the value of commonly used constituent quark mass in the chiral quark model. Then based on the dressed quark propagator, we calculate some properties of the vacuum, such as quark condensate, mixed quark condensate gs<0∣qˉGμνσμνq∣0>g_{s}< 0|\bar{q}G_{\mu\nu}\sigma^{\mu\nu}q|0>, four quark condensate <0∣qˉΓqqˉΓq∣0><0|\bar{q} \Gamma q\bar{q} \Gamma q |0>, tensor, π\pi vacuum susceptibilities. The numerical results are compatible with the values of other theoretical approaches.Comment: 10 pages, 2 figures, 3 tables, some writing errors are correcte

    Excessive Strand End Slip in Prestressed Piles

    Get PDF
    This paper presents the results of a research project that investigated excessive strand end slip observed recently in some prestressed piles. From measurements taken in the field, it is apparent that the problem o excessive initial strand slip is independent of pile shape and size. Strand end slip is evident in piles of different manufacturers in different states in the Southeast. Excessive strand end slip was found in both the top and bottom of the cross section of the piles, although the top portion of the cross section generally exhibited much higher initial slip. Several preventive measures can be adopted to reduce the excessive strand end slip. These preventive measures include: a) proper concrete mixture proportioning to reduce top bar effect; b) use of higher-strength concrete with the lowest possible slump and setting time; c) assessment of the condition of the strands prior to installation to insure excellent bond characteristics; d) gradual release of prestress, with an optimal release sequence; and e) use of adequate vibration to ensure consolidation. The strand end slip measured at five prestressing plants in the Southeast is considerably higher than the allowable end slip and is expected to affect the pile performance. If the strand slip theory is adopted, the strand development length increases substantially due to the excessive strand end slip. A top bar effect factor similar to the one used in reinforced concrete design is recommended. To maintain the excellent quality of precast and prestressed concrete products, manufacturers should adopt a dynamic quality control process that follows the rapid changes in the industry. More tests are necessary to ensure excellent quality, such as the Moustafa or an equivalent test, to assess the bond capabilities of the strands, end slip measurements, and direct measurement of the transfer length. Installation of piles should proceed in a manner to alleviate the top bar effects by placing piles alternately in their best and worst directions

    The Progenitor of the New COMPTEL/ROSAT Supernova Remnant in Vela

    Full text link
    We show that (1) the newly discovered supernova remnant (SNR), GRO J0852--4642/RX J0852.0--4622, was created by a core-collapse supernova of a massive star, and (2) the same supernova event which produced the 44^{44}Ti detected by COMPTEL from this source is probably also responsible for a large fraction of the observed 26^{26}Al emission in the Vela region detected by the same instrument. The first conclusion is based on the fact that the remnant is currently expanding too slowly given its young age for it to be caused by a Type Ia supernova. If the current SNR shell expansion speed is greater than 3000 km/s, a 15M⊙15 M_\odot Type II supernova with a moderate kinetic energy exploding at about 150 pc away is favored. If the SNR expansion speed is lower than 2000 km s−1^{-1}, as derived naively from the X-ray data, a much more energetic supernova is required to have occurred at ∼250\sim250 pc away in a dense environment at the edge of the Gum nebula. This progenitor has a preferred ejecta mass of ≤10M⊙\le10 M_\odot and therefore, it is probably a Type Ib or Type Ic supernova. However, the required high ambient density of nH≥100cm−3n_H \ge 100 cm^{-3} in this scenario is difficult to reconcile with the regional CO data. A combination of our estimates of the age/energetics of the new SNR and the almost perfect positional coincidence of the new SNR with the centroid of the COMPTEL 26 ^{26}Al emission feature of the Vela region strongly favors a causal connection. If confirmed, this will be the first case where both 44^{44}Ti and 26^{26}Al are detected from the same young SNR and together they can be used to select preferred theoretical core-collapse supernova models.Comment: Revised, 10 pages, 2 figures, to appear in ApJ Lett Vol.514 on April 1, 199
    • …
    corecore