17,484 research outputs found

    Nonlinear ac response of anisotropic composites

    Full text link
    When a suspension consisting of dielectric particles having nonlinear characteristics is subjected to a sinusoidal (ac) field, the electrical response will in general consist of ac fields at frequencies of the higher-order harmonics. These ac responses will also be anisotropic. In this work, a self-consistent formalism has been employed to compute the induced dipole moment for suspensions in which the suspended particles have nonlinear characteristics, in an attempt to investigate the anisotropy in the ac response. The results showed that the harmonics of the induced dipole moment and the local electric field are both increased as the anisotropy increases for the longitudinal field case, while the harmonics are decreased as the anisotropy increases for the transverse field case. These results are qualitatively understood with the spectral representation. Thus, by measuring the ac responses both parallel and perpendicular to the uniaxial anisotropic axis of the field-induced structures, it is possible to perform a real-time monitoring of the field-induced aggregation process.Comment: 14 pages and 4 eps figure

    Nonlinear ER effects in an ac applied field

    Full text link
    The electric field used in most electrorheological (ER) experiments is usually quite high, and nonlinear ER effects have been theoretically predicted and experimentally measured recently. A direct method of measuring the nonlinear ER effects is to examine the frequency dependence of the same effects. For a sinusoidal applied field, we calculate the ac response which generally includes higher harmonics. In is work, we develop a multiple image formula, and calculate the total dipole moments of a pair of dielectric spheres, embedded in a nonlinear host. The higher harmonics due to the nonlinearity are calculated systematically.Comment: Presented at Conference on Computational Physics (CCP2000), held at Gold Coast, Australia from 3-8, December 200

    Dielectric Behavior of Nonspherical Cell Suspensions

    Full text link
    Recent experiments revealed that the dielectric dispersion spectrum of fission yeast cells in a suspension was mainly composed of two sub-dispersions. The low-frequency sub-dispersion depended on the cell length, whereas the high-frequency one was independent of it. The cell shape effect was qualitatively simulated by an ellipsoidal cell model. However, the comparison between theory and experiment was far from being satisfactory. In an attempt to close up the gap between theory and experiment, we considered the more realistic cells of spherocylinders, i.e., circular cylinders with two hemispherical caps at both ends. We have formulated a Green function formalism for calculating the spectral representation of cells of finite length. The Green function can be reduced because of the azimuthal symmetry of the cell. This simplification enables us to calculate the dispersion spectrum and hence access the effect of cell structure on the dielectric behavior of cell suspensions.Comment: Preliminary results have been reported in the 2001 March Meeting of the American Physical Society. Accepted for publications in J. Phys.: Condens. Matte

    Theory of the "honeycomb chain-channel" reconstruction of Si(111)3x1

    Full text link
    First-principles electronic-structure methods are used to study a structural model for Ag/Si(111)3x1 recently proposed on the basis of transmission electron diffraction data. The fully relaxed geometry for this model is far more energetically favorable than any previously proposed, partly due to the unusual formation of a Si double bond in the surface layer. The calculated electronic properties of this model are in complete agreement with data from angle-resolved photoemission and scanning tunneling microscopy.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett (the ugly postscript error on page 4 has now been repaired

    Computer simulations of electrorheological fluids in the dipole-induced dipole model

    Full text link
    We have employed the multiple image method to compute the interparticle force for a polydisperse electrorheological (ER) fluid in which the suspended particles can have various sizes and different permittivites. The point-dipole (PD) approximation being routinely adopted in computer simulation of ER fluids is shown to err considerably when the particles approach and finally touch due to multipolar interactions. The PD approximation becomes even worse when the dielectric contrast between the particles and the host medium is large. From the results, we show that the dipole-induced-dipole (DID) model yields very good agreements with the multiple image results for a wide range of dielectric contrasts and polydispersity. As an illustration, we have employed the DID model to simulate the athermal aggregation of particles in ER fluids both in uniaxial and rotating fields. We find that the aggregation time is significantly reduced. The DID model accounts for multipolar interaction partially and is simple to use in computer simulation of ER fluids.Comment: 22 pages, 7 figures, submitted to Phys. Rev.

    Effects of geometric anisotropy on local field distribution: Ewald-Kornfeld formulation

    Full text link
    We have applied the Ewald-Kornfeld formulation to a tetragonal lattice of point dipoles, in an attempt to examine the effects of geometric anisotropy on the local field distribution. The various problems encountered in the computation of the conditionally convergent summation of the near field are addressed and the methods of overcoming them are discussed. The results show that the geometric anisotropy has a significant impact on the local field distribution. The change in the local field can lead to a generalized Clausius-Mossotti equation for the anisotropic case.Comment: Accepted for publications, Journal of Physics: Condensed Matte

    Bragg spectroscopy of a superfluid Bose-Hubbard gas

    Full text link
    Bragg spectroscopy is used to measure excitations of a trapped, quantum-degenerate gas of 87Rb atoms in a 3-dimensional optical lattice. The measurements are carried out over a range of optical lattice depths in the superfluid phase of the Bose-Hubbard model. For fixed wavevector, the resonant frequency of the excitation is found to decrease with increasing lattice depth. A numerical calculation of the resonant frequencies based on Bogoliubov theory shows a less steep rate of decrease than the measurements.Comment: 11 pages, 4 figure

    New method for detecting & measuring cracks on concrete using fiber optic sensors

    Get PDF
    Advances in the production of optical fibers have made possible the recent development of innovative sensing systems for health monitoring of civil structures. The main reasons for this development are the reduced weight and dimensions of fiber optic sensors, the strong immunity to electromagnetic interference, the improved environmental resistance and the scale flexibility for small-gage and long-gage measurement. This paper provides an overview of the challenges in developing a new fiber optic sensor that can be employed to monitor flexural and tensile cracks on RC structures. The methodology in detecting and localizing the formation of flexural cracks in various locations and sensor’s capability in measuring a range of crack widths is demonstrated through testing of instrumented RC beams subjected to sustained and repeated loading.Fundação para a Ciência e a Tecnologia (FCT
    corecore