5 research outputs found

    Increased Mosquito Midgut Infection by Dengue Virus Recruitment of Plasmin Is Blocked by an Endogenous Kazal-type Inhibitor

    No full text
    International audienceDengue symptoms include alteration of blood coagulation and fibrinolysis, causing severe hemorrhage and death. Here, we demonstrate that higher concentration of plasmin, the human fibrinolytic factor, in blood meal enhances dengue virus (DENV) infection in mosquito midgut and dissemination in mosquitoes. We also show that mosquitoes express a plasmin-selective Kazal-type inhibitor (AaTI) in the midgut to inhibit plasmin proteolysis and revert the enhanced infection. Using bio-layer interferometry, we show that DENV, plasmin, and AaTI interact to form a tripartite complex. Eventually, plasmin increases midgut internalization of dextran molecules and this is reverted by AaTI. Our study demonstrates that (1) DENV recruits plasmin to increase local proteolytic activity in the midgut, thus degrading the glycocalyx and enhancing DENV internalization and (2) AaTI can act as a transmission-blocking agent by inhibiting plasmin proteolysis. Our results indicate that dengue pathogenesis enhances DENV fitness by increasing its infectivity to mosquitoes

    Dengue virus infection modifies mosquito blood-feeding behavior to increase transmission to the host

    No full text
    International audienceMosquito blood-feeding behavior is a key determinant of the epidemiology of dengue viruses (DENV), the most-prevalent mosquito-borne viruses. However, despite its importance, how DENV infection influences mosquito blood-feeding and, consequently, transmission remains unclear. Here, we developed a high-resolution, video-based assay to observe the blood-feeding behavior of Aedes aegypti mosquitoes on mice. We then applied multivariate analysis on the high-throughput, unbiased data generated from the assay to ordinate behavioral parameters into complex behaviors. We showed that DENV infection increases mosquito attraction to the host and hinders its biting efficiency, the latter resulting in the infected mosquitoes biting more to reach similar blood repletion as uninfected mosquitoes. To examine how increased biting influences DENV transmission to the host, we established an in vivo transmission model with immuno-competent mice and demonstrated that successive short probes result in multiple transmissions. Finally, to determine how DENV-induced alterations of host-seeking and biting behaviors influence dengue epidemiology, we integrated the behavioral data within a mathematical model. We calculated that the number of infected hosts per infected mosquito, as determined by the reproduction rate, tripled when mosquito behavior was influenced by DENV infection. Taken together, this multidisciplinary study details how DENV infection modulates mosquito blood-feeding behavior to increase vector capacity, proportionally aggravating DENV epidemiology. By elucidating the contribution of mosquito behavioral alterations on DENV transmission to the host, these results will inform epidemiological modeling to tailor improved interventions against dengue

    3rd National Conference on Image Processing, Computing, Communication, Networking and Data Analytics

    No full text
    This volume contains contributed articles presented in the conference NCICCNDA 2018, organized by the Department of Computer Science and Engineering, GSSS Institute of Engineering and Technology for Women, Mysore, Karnataka (India) on 28th April 2018
    corecore