7 research outputs found

    Quantification of macrophage-driven inflammation during myocardial infarction with 18F-LW223, a novel TSPO radiotracer with binding independent of the rs6971 human polymorphism

    Get PDF
    Myocardial infarction (MI) is one of the leading causes of death worldwide, and inflammation is central to tissue response and patient outcomes. The 18-kDa translocator protein (TSPO) has been used in PET as an inflammatory biomarker. The aims of this study were to screen novel, fluorinated, TSPO radiotracers for susceptibility to the rs6971 genetic polymorphism using in vitro competition binding assays in human brain and heart; assess whether the in vivo characteristics of our lead radiotracer, 18F-LW223, are suitable for clinical translation; and validate whether 18F-LW223 can detect macrophage-driven inflammation in a rat MI model. Methods: Fifty-one human brain and 29 human heart tissue samples were screened for the rs6971 polymorphism. Competition binding assays were conducted with 3H-PK11195 and the following ligands: PK11195, PBR28, and our novel compounds (AB5186 and LW223). Naïve rats and mice were used for in vivo PET kinetic studies, radiometabolite studies, and dosimetry experiments. Rats underwent permanent coronary artery ligation and were scanned using PET/CT with an invasive input function at 7 d after MI. For quantification of PET signal in the hypoperfused myocardium, K1 (rate constant for transfer from arterial plasma to tissues) was used as a surrogate marker of perfusion to correct the binding potential for impaired radiotracer transfer from plasma to tissue (BPTC). Results: LW223 binding to TSPO was not susceptible to the rs6971 genetic polymorphism in human brain and heart samples. In rodents, 18F-LW223 displayed a specific uptake consistent with TSPO expression, a slow metabolism in blood (69% of parent at 120 min), a high plasma free fraction of 38.5%, and a suitable dosimetry profile (effective dose of 20.5–24.5 μSv/MBq). 18F-LW223 BPTC was significantly higher in the MI cohort within the infarct territory of the anterior wall relative to the anterior wall of naïve animals (32.7 ± 5.0 vs. 10.0 ± 2.4 cm3/mL/min, P ≤ 0.001). Ex vivo immunofluorescent staining for TSPO and CD68 (macrophage marker) resulted in the same pattern seen with in vivo BPTC analysis. Conclusion: 18F-LW223 is not susceptible to the rs6971 genetic polymorphism in in vitro assays, has favorable in vivo characteristics, and is able to accurately map macrophage-driven inflammation after MI

    Kinetic modelling and quantification bias in small animal PET studies with [18F]AB5186, a novel 18 kDa translocator protein radiotracer

    Get PDF
    Introduction: Positron Emission Tomography (PET) imaging with selective 18 kDa translocator protein (TSPO) radiotracers has contributed to our understanding on the role of inflammation in disease development and progression. With an increasing number of rodent models of human disease and expansion of the preclinical PET imaging base worldwide, accurate quantification of longitudinal rodent TSPO PET datasets is necessary. This is particularly relevant as TSPO PET quantification relies on invasive blood sampling due to lack of a suitable tissue reference region. Here we investigate the kinetics and quantification bias of a novel TSPO radiotracer [18F]AB5186 in rats using automatic, manual and image derived input functions. Methods: [18F]AB5186 was administered intravenously and dynamic PET imaging was acquired over 2 hours. Arterial blood was collected manually to derive a population based input function or using an automatic blood sampler to derive a plasma input function. Manually sampled blood was also used to analyze the [18F]AB5186 radiometabolite profile in plasma and applied to all groups as a population based dataset. Kinetic models were used to estimate distribution volumes (VT) and [18F]AB5186 outcome measure bias was determined. Results: [18F]AB5186 distribution in rats was consistent with TSPO expression and at 2 h post-injection 50% of parent compound was still present in plasma. Population based manual sampling methods and image derived input function (IDIF) underestimated VT by ~50% and 88% compared with automatic blood sampling, respectively. The VT variability was lower when using IDIF versus arterial blood sampling methods and analysis of the Bland-Altman plots showed a good agreement between methods of analysis. Conclusion: Quantification of TSPO PET rodent data using image-derived methods, which are more amenable for longitudinal scanning of small animals, yields outcome measures with reduced variability and good agreement, albeit biased, compared with invasive blood sampling methods
    corecore