44 research outputs found
Power Dependence and Power Paradoxes in Bargaining
[Excerpt] What this article (and our larger program of work) is designed to demonstrate is that these very simple ideas represent a particularly suitable starting point for understanding the power struggle between parties who regularly engage in negotiation. Specifically, in this article we show that the approach contains certain paradoxes regarding the acquisition and use of power in an ongoing bargaining relationship. The dependence framework treats the ongoing relationship as a power struggle in which each party tries to maneuver itself into a favorable power position
Geometry of Frictionless and Frictional Sphere Packings
We study static packings of frictionless and frictional spheres in three
dimensions, obtained via molecular dynamics simulations, in which we vary
particle hardness, friction coefficient, and coefficient of restitution.
Although frictionless packings of hard-spheres are always isostatic (with six
contacts) regardless of construction history and restitution coefficient,
frictional packings achieve a multitude of hyperstatic packings that depend on
system parameters and construction history. Instead of immediately dropping to
four, the coordination number reduces smoothly from as the friction
coefficient between two particles is increased.Comment: 6 pages, 9 figures, submitted to Phys. Rev.
Statistics of the contact network in frictional and frictionless granular packings
Simulated granular packings with different particle friction coefficient mu
are examined. The distribution of the particle-particle and particle-wall
normal and tangential contact forces P(f) are computed and compared with
existing experimental data. Here f equivalent to F/F-bar is the contact force F
normalized by the average value F-bar. P(f) exhibits exponential-like decay at
large forces, a plateau/peak near f = 1, with additional features at forces
smaller than the average that depend on mu. Computations of the force-force
spatial distribution function and the contact point radial distribution
function indicate that correlations between forces are only weakly dependent on
friction and decay rapidly beyond approximately three particle diameters.
Distributions of the particle-particle contact angles show that the contact
network is not isotropic and only weakly dependent on friction. High
force-bearing structures, or force chains, do not play a dominant role in these
three dimensional, unloaded packings.Comment: 11 pages, 13 figures, submitted to PR
Transitions in the Horizontal Transport of Vertically Vibrated Granular Layers
Motivated by recent advances in the investigation of fluctuation-driven
ratchets and flows in excited granular media, we have carried out experimental
and simulational studies to explore the horizontal transport of granular
particles in a vertically vibrated system whose base has a sawtooth-shaped
profile. The resulting material flow exhibits novel collective behavior, both
as a function of the number of layers of particles and the driving frequency;
in particular, under certain conditions, increasing the layer thickness leads
to a reversal of the current, while the onset of transport as a function of
frequency occurs gradually in a manner reminiscent of a phase transition. Our
experimental findings are interpreted here with the help of extensive, event
driven Molecular Dynamics simulations. In addition to reproducing the
experimental results, the simulations revealed that the current may be reversed
as a function of the driving frequency as well. We also give details about the
simulations so that similar numerical studies can be carried out in a more
straightforward manner in the future.Comment: 12 pages, 18 figure
Partially fluidized shear granular flows: Continuum theory and MD simulations
The continuum theory of partially fluidized shear granular flows is tested
and calibrated using two dimensional soft particle molecular dynamics
simulations. The theory is based on the relaxational dynamics of the order
parameter that describes the transition between static and flowing regimes of
granular material. We define the order parameter as a fraction of static
contacts among all contacts between particles. We also propose and verify by
direct simulations the constitutive relation based on the splitting of the
shear stress tensor into a``fluid part'' proportional to the strain rate
tensor, and a remaining ``solid part''. The ratio of these two parts is a
function of the order parameter. The rheology of the fluid component agrees
well with the kinetic theory of granular fluids even in the dense regime. Based
on the hysteretic bifurcation diagram for a thin shear granular layer obtained
in simulations, we construct the ``free energy'' for the order parameter. The
theory calibrated using numerical experiments with the thin granular layer is
applied to the surface-driven stationary two dimensional granular flows in a
thick granular layer under gravity.Comment: 20 pages, 19 figures, submitted to Phys. Rev.
Target highlights in CASP13: experimental target structures through the eyes of their authors
The functional and biological significance of selected CASP13 targets are described by the authors of the structures. The structural biologists discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP13 experiment
From Molecular Dynamics and Particle Simulations towards Constitutive Relations for Continuum Theory
Granular flow considerations in the design of a cascade solid breeder reaction chamber
Both horizontally and vertically oriented rotating chambers with granular material held on the inner surface by centrifugal action are examined. Modifications to the condition for controlled quasi-static flow on an incline plane, phi/sub w/ < ..cap alpha.. < phi/sub r/, where phi/sub w/ is the wall friction angle, ..cap alpha.. is the angle of inclination of the plane, and phi/sub r/ is the drained angle of repose of the material are examined for the case of horizontal and vertical surfaces of revolution. Allowed included half angles for horizontally oriented chambers are likely to be in the range of 30/sup 0/ +- 10/sup 0/ for ceramic particles and metal surfaces. For vertical orientations the maximum half-angle of the top cone is slightly less than the wall friction angle phi/sub w/ while the lower portion can have a half angle as large as (90/sup 0/ - phi/sub w). Percolation of fines through shearing granular solids is briefly discussed and recommended experimental and calculational studies to obtain a better understanding of this behavior are described