591 research outputs found

    Excess sub-millimetre emission from GRS 1915+105

    Get PDF
    We present the first detections of the black hole X-ray binary GRS 1915+105 at sub-millimetre wavelengths. We clearly detect the source at 350 GHz on two epochs, with significant variability over the 24 hr between epochs. Quasi-simultaneous radio monitoring indicates an approximately flat spectrum from 2 - 350 GHz, although there is marginal evidence for a minimum in the spectrum between 15 - 350 GHz. The flat spectrum and correlated variability imply that the sub-mm emission arises from the same synchrotron source as the radio emission. This source is likely to be a quasi-steady partially self-absorbed jet, in which case these sub-mm observations probe significantly closer to the base of the jet than do radio observations and may be used in future as a valuable diagnostic of the disc:jet connection in this source.Comment: 5 pages, 3 figures, accepted for publication in MNRA

    Cygnus X-3 in outburst : quenched radio emission, radiation losses and variable local opacity

    Full text link
    We present multiwavelength observations of Cygnus X-3 during an extended outburst in 1994 February - March. Intensive radio monitoring at 13.3, 3.6 & 2.0 cm is complemented by observations at (sub)millimetre and infrared wavelengths, which find Cyg X-3 to be unusually bright and variable, and include the first reported detection of the source at 0.45 mm. We report the first confirmation of quenched radio emission prior to radio flaring independent of observations at Green Bank. The observations reveal evidence for wavelength-dependent radiation losses and gradually decreasing opacity in the environment of the radio jet. We find that the radiation losses are likely to be predominantly inverse Compton losses experienced by the radio-emitting electrons in the strong radiation field of a luminous companion to the compact object. We interpret the decreasing opacity during the flare sequence as resulting from a decreasing proportion of thermal electrons entrained in the jet, reflecting a decreasing density in the region of jet formation. We present, drawing in part on the work of other authors, a model based upon mass-transfer rate instability predicting gamma-ray, X-ray, infrared and radio trends during a radio flaring sequence.Comment: LaTeX, 11 pages, 6 figures. Submitted to MNRA

    MERLIN observations of relativistic ejections from GRS 1915+105

    Get PDF
    We present high resolution MERLIN radio images of multiple relativistic ejections from GRS 1915+105 in 1997 October / November. The observations were made at a time of complex radio behaviour, corresponding to multiple optically-thin outbursts and several days of rapid radio flux oscillations. The radio imaging resolved four major ejection events from the system. As previously reported from earlier VLA observations of the source, we observe apparent superluminal motions resulting from intrinsically relativistic motions of the ejecta. However, our measured proper motions are significantly greater than those observed on larger angular scales with the VLA. Under the assumption of an intrinsically symmetric ejection, we can place an upper limit on the distance to GRS 1915+105 of 11.2 +/- 0.8 kpc. Solutions for the velocities unambiguously require a higher intrinsic speed by about 0.1c than that derived from the earlier VLA observations, whilst the angle to the line-of-sight is not found to be significantly different. At a distance of 11 kpc, we obtain solutions of v = 0.98 (-0.05,+0.02)c and theta = 66 +/- 2 degrees. The jet also appears to be curved on a scale which corresponds to a period of around 7 days. We observe significant evolution of the linear polarisation of the approaching component, with large rotations in position angle and a general decrease in fractional polarisation. The power input into the formation of the jet is very large, >10^38 erg/s at 11 kpc for a pair plasma. If the plasma contains a cold proton for each electron, then the mass outflow rate, >10^18 g/sec is comparable to inflow rates previously derived from X-ray spectral fits.Comment: 14 pages, 7 figures. Accepted for publication in MNRA

    RXTE Observations of Cygnus X-3

    Get PDF
    In the period between May 1997 and August 1997 a series of pointed RXTE observations were made of Cyg X-3. During this period Cyg X-3 made a transition from a quiescent radio state to a flare state (including a major flare) and then returned to a quiescent radio state. Analyses of the observations are made in the context of concurrent observations in the hard X-ray (CGRO/BATSE), soft X-ray (RXTE/ASM) and the radio (Green Bank Interferometer, Ryle Telescope, and RATAN-600). Preliminary analyses of the observations are presented.Comment: 4 pages, 4 figures. newarcrc.sty included. To appear in 2nd Workshop of Relativistic Jets from Galactic Sources, R.N. Ogley and S.J. Bell Burnell eds, NewAR 42, in pres

    Cygnus X-3 with ISO: investigating the wind

    Get PDF
    We observed the energetic binary Cygnus X-3 in both quiescent and flaring states between 4 and 16 microns using the ISO satellite. We find that the quiescent source shows the thermal free-free spectrum typical of a hot, fast stellar wind, such as from a massive helium star. The quiescent mass-loss rate due to a spherically symmetric, non-accelerating wind is found to be in the range 0.4-2.9 x 10E-4 solar masses per year, consistent with other infrared and radio observations, but considerably larger than the 10E-5 solar masses per year deduced from both the orbital change and the X-ray column density. There is rapid, large amplitude flaring at 4.5 and 11.5 microns at the same time as enhanced radio and X-ray activity, with the infrared spectrum apparently becoming flatter in the flaring state. We believe non-thermal processes are operating, perhaps along with enhanced thermal emission.Comment: Accepted for publication in MNRAS, 11 pages, 6 figure

    Long-Term Flux Monitoring of LSI +61 303 at 2.25 and 8.3 GHz

    Full text link
    LSI +61 303 is an exotic binary system consisting of a ~10 Msun B star and a compact object which is probably a neutron star. The system is associated with the interesting radio source GT0236+610 that exhibits bright radio outbursts with a period of 26.5 days. We report the results of continuous daily radio interferometric observations of GT0236+610 at 2.25 and 8.3 GHz from 1994 January to 1996 February. The observations cover 25 complete (and 3 partial) cycles with multiple observations each day. We detect substantial cycle-to-cycle variability of the radio emission characterized by a rapid onset of the radio flares followed by a more gradual decrease of the emission. We detect a systematic change of the radio spectral index alpha which typically becomes larger than zero at the onset of the radio outbursts. This behavior is suggestive of expansion of material initially optically thick to radio frequencies, indicating either that synchrotron or inverse Compton cooling are important or that the free-free optical depth to the source is rapidly changing. After two years of observations, we see only weak evidence for the proposed 4-year periodic modulation in the peak flux of the outbursts. We observe a secular trend in the outburst phases according the the best published ephemeris. This trend indicates either orbital period evolution, or a drift in outburst orbital phase in response to some other change in the system.Comment: 23 pages, LaTex, 7 figures, to appear in ApJ, v491, Dec 10th issue, for associated info and preprints see http://www.srl.caltech.edu/personnel/paulr/lsi.htm

    Simultaneous X-ray and Radio Monitoring of the Unusual Binary LSI+61 303: Measurements of the Lightcurve and High-Energy Spectrum

    Get PDF
    The binary system, LSI+61 303, is unusual both because of the dramatic, periodic, radio outbursts, and because of its possible association with the 100 MeV gamma-ray source, 2CG135+01. We have performed simultaneous radio and Rossi X-ray Timing Explorer X-ray observations at eleven intervals over the 26.5 day orbit, and in addition searched for variability on timescales ranging from milliseconds to hours. We confirm the modulation of the X-ray emission on orbital timescales originally reported by Taylor et al. (1996), and in addition we find a significant offset between the peak of the X-ray and radio flux. We argue that based on these results, the most likely X-ray emission mechanism is inverse Compton scattering of stellar photons off of electrons accelerated at the shock boundary between the relativistic wind of a young pulsar and the Be star wind. In these observations we also detected 2 -- 150 keV flux from the nearby low-redshift quasar QSO~0241+622. Comparing these measurements to previous hard X-ray and gamma-ray observations of the region containing both LSI+61 303 and QSO~0241+622, it is clear that emission from the QSO dominates.Comment: 23 pages, 6 figures, Accepted for publication in the Astrophysical Journa
    • …
    corecore