70 research outputs found

    The health informatics cohort enhancement project (HICE): using routinely collected primary care data to identify people with a lifetime diagnosis of psychotic disorder

    Get PDF
    Background: We have previously demonstrated that routinely collected primary care data can be used to identify potential participants for trials in depression [1]. Here we demonstrate how patients with psychotic disorders can be identified from primary care records for potential inclusion in a cohort study. We discuss the strengths and limitations of this approach; assess its potential value and report challenges encountered. Methods: We designed an algorithm with which we searched for patients with a lifetime diagnosis of psychotic disorders within the Secure Anonymised Information Linkage (SAIL) database of routinely collected health data. The algorithm was validated against the "gold standard" of a well established operational criteria checklist for psychotic and affective illness (OPCRIT). Case notes of 100 patients from a community mental health team (CMHT) in Swansea were studied of whom 80 had matched GP records. Results: The algorithm had favourable test characteristics, with a very good ability to detect patients with psychotic disorders (sensitivity > 0.7) and an excellent ability not to falsely identify patients with psychotic disorders (specificity > 0.9). Conclusions: With certain limitations our algorithm can be used to search the general practice data and reliably identify patients with psychotic disorders. This may be useful in identifying candidates for potential inclusion in cohort studies

    Cognitive performance at first episode of psychosis and the relationship with future treatment resistance: Evidence from an international prospective cohort study

    Get PDF
    Background: Antipsychotic treatment resistance affects up to a third of individuals with schizophrenia, with recent research finding systematic biological differences between antipsychotic resistant and responsive patients. Our aim was to determine whether cognitive impairment at first episode significantly differs between future antipsychotic responders and resistant cases.// Methods: Analysis of data from seven international cohorts of first-episode psychosis (FEP) with cognitive data at baseline (N = 683) and follow-up data on antipsychotic treatment response: 605 treatment responsive and 78 treatment resistant cases. Cognitive measures were grouped into seven cognitive domains based on the pre-existing literature. We ran multiple imputation for missing data and used logistic regression to test for associations between cognitive performance at FEP and treatment resistant status at follow-up.// Results: On average patients who were future classified as treatment resistant reported poorer performance across most cognitive domains at baseline. Univariate logistic regressions showed that antipsychotic treatment resistance cases had significantly poorer IQ/general cognitive functioning at FEP (OR = 0.70, p = .003). These findings remained significant after adjusting for additional variables in multivariable analyses (OR = 0.76, p = .049).// Conclusions: Although replication in larger studies is required, it appears that deficits in IQ/general cognitive functioning at first episode are associated with future treatment resistance. Cognitive variables may be able to provide further insight into neurodevelopmental factors associated with treatment resistance or act as early predictors of treatment resistance, which could allow prompt identification of refractory illness and timely interventions

    Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia

    Get PDF
    We report results from the Bipolar Exome (BipEx) collaboration analysis of whole-exome sequencing of 13,933 patients with bipolar disorder (BD) matched with 14,422 controls. We find an excess of ultra-rare protein-truncating variants (PTVs) in patients with BD among genes under strong evolutionary constraint in both major BD subtypes. We find enrichment of ultra-rare PTVs within genes implicated from a recent schizophrenia exome meta-analysis (SCHEMA; 24,248 cases and 97,322 controls) and among binding targets of CHD8. Genes implicated from genome-wide association studies (GWASs) of BD, however, are not significantly enriched for ultra-rare PTVs. Combining gene-level results with SCHEMA, AKAP11 emerges as a definitive risk gene (odds ratio (OR) = 7.06, P = 2.83 × 10-9). At the protein level, AKAP-11 interacts with GSK3B, the hypothesized target of lithium, a primary treatment for BD. Our results lend support to BD's polygenicity, demonstrating a role for rare coding variation as a significant risk factor in BD etiology

    Mesenchymal cell survival in airway and interstitial pulmonary fibrosis

    Get PDF
    Fibrotic reactions in the airways of the lung or the pulmonary interstitium are a common pathologic outcome after exposure to a wide variety of toxic agents, including metals, particles or fibers. The survival of mesenchymal cells (fibroblasts and myofibroblasts) is a key factor in determining whether a fibroproliferative response that occurs after toxic injury to the lung will ultimately resolve or progress to a pathologic state. Several polypeptide growth factors, including members of the platelet-derived growth factor (PDGF) family and the epidermal growth factor (EGF) family, are prosurvival factors that stimulate a replicative and migratory mesenchymal cell phenotype during the early stages of lung fibrogenesis. This replicative phenotype can progress to a matrix synthetic phenotype in the presence of transforming growth factor-β1 (TGF-β1). The resolution of a fibrotic response requires growth arrest and apoptosis of mesenchymal cells, whereas progressive chronic fibrosis has been associated with mesenchymal cell resistance to apoptosis. Mesenchymal cell survival or apoptosis is further influenced by cytokines secreted during Th1 inflammation (e.g., IFN-γ) or Th2 inflammation (e.g., IL-13) that modulate the expression of growth factor activity through the STAT family of transcription factors. Understanding the mechanisms that regulate the survival or death of mesenchymal cells is central to ultimately developing therapeutic strategies for lung fibrosis

    Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke.

    Get PDF
    OBJECTIVE: For 3,670 stroke patients from the United Kingdom, United States, Australia, Belgium, and Italy, we performed a genome-wide meta-analysis of white matter hyperintensity volumes (WMHV) on data imputed to the 1000 Genomes reference dataset to provide insights into disease mechanisms. METHODS: We first sought to identify genetic associations with white matter hyperintensities in a stroke population, and then examined whether genetic loci previously linked to WMHV in community populations are also associated in stroke patients. Having established that genetic associations are shared between the 2 populations, we performed a meta-analysis testing which associations with WMHV in stroke-free populations are associated overall when combined with stroke populations. RESULTS: There were no associations at genome-wide significance with WMHV in stroke patients. All previously reported genome-wide significant associations with WMHV in community populations shared direction of effect in stroke patients. In a meta-analysis of the genome-wide significant and suggestive loci (p < 5 × 10(-6)) from community populations (15 single nucleotide polymorphisms in total) and from stroke patients, 6 independent loci were associated with WMHV in both populations. Four of these are novel associations at the genome-wide level (rs72934505 [NBEAL1], p = 2.2 × 10(-8); rs941898 [EVL], p = 4.0 × 10(-8); rs962888 [C1QL1], p = 1.1 × 10(-8); rs9515201 [COL4A2], p = 6.9 × 10(-9)). CONCLUSIONS: Genetic associations with WMHV are shared in otherwise healthy individuals and patients with stroke, indicating common genetic susceptibility in cerebral small vessel disease.Funding for collection, genotyping, and analysis of stroke samples was provided by Wellcome Trust Case Control Consortium-2, a functional genomics grant from the Wellcome Trust (DNA-Lacunar), the Stroke Association (DNA-lacunar), the Intramural Research Program of National Institute of Ageing (Massachusetts General Hospital [MGH] and Ischemic Stroke Genetics Study [ISGS]), National Institute of Neurological Disorders and Stroke (Siblings With Ischemic Stroke Study, ISGS, and MGH), the American Heart Association/Bugher Foundation Centers for Stroke Prevention Research (MGH), Deane Institute for Integrative Study of Atrial Fibrillation and Stroke (MGH), National Health and Medical Research Council (Australian Stroke Genetics Collaborative), and Italian Ministry of Health (Milan). Additional support for sample collection came from the Medical Research Council, National Institute of Health Research Biomedical Research Centre and Acute Vascular Imaging Centre (Oxford), Wellcome Trust and Binks Trust (Edinburgh), and Vascular Dementia Research Foundation (Munich). MT is supported by a project grant from the Stroke Association (TSA 2013/01). HSM is supported by an NIHR Senior Investigator award. HSM and SB are supported by the NIHR Cambridge University Hospitals Comprehensive Biomedical Research Centre. VT and RL are supported by grants from FWO Flanders. PR holds NIHR and Wellcome Trust Senior Investigator Awards. PAS is supported by an MRC Fellowship. CML’s research is supported by the National Institute for Health Research Biomedical Research Centre (BRC) based at Guy's and St Thomas' NHS Foundation Trust and King's College London, and the BRC for Mental Health at South London and Maudsley NHS Foundation Trust and King’s College London. This is the final version of the article. It first appeared from Wolters Kluwer via http://dx.doi.org/10.1212/WNL.000000000000226

    Integrative functional genomic analysis of human brain development and neuropsychiatric risks

    Get PDF
    INTRODUCTION The brain is responsible for cognition, behavior, and much of what makes us uniquely human. The development of the brain is a highly complex process, and this process is reliant on precise regulation of molecular and cellular events grounded in the spatiotemporal regulation of the transcriptome. Disruption of this regulation can lead to neuropsychiatric disorders. RATIONALE The regulatory, epigenomic, and transcriptomic features of the human brain have not been comprehensively compiled across time, regions, or cell types. Understanding the etiology of neuropsychiatric disorders requires knowledge not just of endpoint differences between healthy and diseased brains but also of the developmental and cellular contexts in which these differences arise. Moreover, an emerging body of research indicates that many aspects of the development and physiology of the human brain are not well recapitulated in model organisms, and therefore it is necessary that neuropsychiatric disorders be understood in the broader context of the developing and adult human brain. RESULTS Here we describe the generation and analysis of a variety of genomic data modalities at the tissue and single-cell levels, including transcriptome, DNA methylation, and histone modifications across multiple brain regions ranging in age from embryonic development through adulthood. We observed a widespread transcriptomic transition beginning during late fetal development and consisting of sharply decreased regional differences. This reduction coincided with increases in the transcriptional signatures of mature neurons and the expression of genes associated with dendrite development, synapse development, and neuronal activity, all of which were temporally synchronous across neocortical areas, as well as myelination and oligodendrocytes, which were asynchronous. Moreover, genes including MEF2C, SATB2, and TCF4, with genetic associations to multiple brain-related traits and disorders, converged in a small number of modules exhibiting spatial or spatiotemporal specificity. CONCLUSION We generated and applied our dataset to document transcriptomic and epigenetic changes across human development and then related those changes to major neuropsychiatric disorders. These data allowed us to identify genes, cell types, gene coexpression modules, and spatiotemporal loci where disease risk might converge, demonstrating the utility of the dataset and providing new insights into human development and disease

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    A Guide to Medications Inducing Salivary Gland Dysfunction, Xerostomia, and Subjective Sialorrhea: A Systematic Review Sponsored by the World Workshop on Oral Medicine VI

    Get PDF

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10-14 and 50-54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings The global TFR decreased from 2.72 (95% uncertainty interval [UI] 2.66-2.79) in 2000 to 2.31 (2.17-2.46) in 2019. Global annual livebirths increased from 134.5 million (131.5-137.8) in 2000 to a peak of 139.6 million (133.0-146.9) in 2016. Global livebirths then declined to 135.3 million (127.2-144.1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2.1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27.1% (95% UI 26.4-27.8) of global livebirths. Global life expectancy at birth increased from 67.2 years (95% UI 66.8-67.6) in 2000 to 73.5 years (72.8-74.3) in 2019. The total number of deaths increased from 50.7 million (49.5-51.9) in 2000 to 56.5 million (53.7-59.2) in 2019. Under-5 deaths declined from 9.6 million (9.1-10.3) in 2000 to 5.0 million (4.3-6.0) in 2019. Global population increased by 25.7%, from 6.2 billion (6.0-6.3) in 2000 to 7.7 billion (7.5-8.0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58.6 years (56.1-60.8) in 2000 to 63.5 years (60.8-66.1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    corecore