39 research outputs found

    Vector-like Fields, Messenger Mixing and the Higgs mass in Gauge Mediation

    Get PDF
    In order to generate, in the context of gauge mediation, a Higgs mass around 126 GeV that avoids the little hierarchy problem, we explore a set of models where the messengers are directly coupled to new vector-like fields at the TeV scale in addition to the usual low energy degrees of freedom. We find that in this context, stop masses lighter than 2 TeV and large AA-terms are generated, thereby improving issues of fine tuning.Comment: 17 pages. V3: Version accepted for publication at JHE

    A Singlet Extension of the MSSM with a Dark Matter Portal

    Get PDF
    The minimal extension of the MSSM (NMSSM) has been widely studied in the search for a natural solution to the μ\mu problem. In this work, we consider a variation of the NMSSM where an extra singlet is added and a Peccei-Quinn symmetry is imposed. We study its neutralino sector and compute the annihilation cross section of the lightest neutralino. We use existent cosmological and collider data to constrain the parameter space and consider the lightest neutralino, which is very light, as a dark matter candidate.Comment: 26 pages, 8 figures . v4: minor corrections; version accepted for publicatio

    Dynamics of Relaxed Inflation

    Full text link
    The cosmological relaxation of the electroweak scale has been proposed as a mechanism to address the hierarchy problem of the Standard Model. A field, the relaxion, rolls down its potential and, in doing so, scans the squared mass parameter of the Higgs, relaxing it to a parametrically small value. In this work, we promote the relaxion to an inflaton. We couple it to Abelian gauge bosons, thereby introducing the necessary dissipation mechanism which slows down the field in the last stages. We describe a novel reheating mechanism, which relies on the gauge-boson production leading to strong electromagnetic fields, and proceeds via the vacuum production of electron-positron pairs through the Schwinger effect. We refer to this mechanism as Schwinger reheating. We discuss the cosmological dynamics of the model and the phenomenological constraints from CMB and other experiments. We find that a cutoff close to the Planck scale may be achieved. In its minimal form, the model does not generate sufficient curvature perturbations and additional ingredients, such as a curvaton field, are needed.Comment: 39 pages, 3 figures, appendices D and E added, published in JHE

    Strong Subadditivity, Null Energy Condition and Charged Black Holes

    Get PDF
    Using the Hubeny-Rangamani-Takayanagi (HRT) conjectured formula for entanglement entropy in the context of the AdS/CFT correspondence with time-dependent backgrounds, we investigate the relation between the bulk null energy condition (NEC) of the stress-energy tensor with the strong sub-additivity (SSA) property of entanglement entropy in the boundary theory. In a background that interpolates between an AdS to an AdS-Reissner-Nordstrom-type geometry, we find that generically there always exists a critical surface beyond which the violation of NEC would naively occur. However, the extremal area surfaces that determine the entanglement entropy for the boundary theory, can penetrate into this forbidden region only for certain choices for the mass and the charge functions in the background. This penetration is then perceived as the violation of SSA in the boundary theory. We also find that this happens only when the critical surface lies above the apparent horizon, but not otherwise. We conjecture that SSA, which is thus non-trivially related to NEC, also characterizes the entire time-evolution process along which the dual field theory may thermalize.Comment: 27 pages, v3 matches the published versio
    corecore