29 research outputs found
FGDB: revisiting the genome annotation of the plant pathogen Fusarium graminearum
The MIPS Fusarium graminearum Genome Database (FGDB) was established as a comprehensive genome database on one of the most devastating fungal plant pathogens of wheat, barley and maize. The current version of FGDB v3.1 provides information on the full manually revised gene set based on the Broad Institute assembly FG3 genome sequence. The results of gene prediction tools were integrated with the help of comparative data on related species to result in a set of 13.718 annotated protein coding genes. This rigorous approach involved adding or modifying gene models and represents a coding sequence gold standard for the genus Fusarium. The gene loci improvements results in 2461 genes which either are new or have different structures compared to the Broad Institute assembly 3 gene set. Moreover the database serves as a convenient entry point to explore expression data results and to obtain information on the Affymetrix GeneChip probe sets. The resource is accessible on http://mips.gsf.de/genre/proj/FGDB/
Centerscope
Centerscope, formerly Scope, was published by the Boston University Medical Center "to communicate the concern of the Medical Center for the development and maintenance of improved health care in contemporary society.
Contents 1 Novelty in Evolution..................... 1
Chemistry: Organization as a self-maintaining network of transformations ..................... 14 4.3 Self-rewiring signaling networks: Organization as distributed control ........ 16 5 References ............................ 18 inE What is novelty? Novelty is something that hasn't been there bef"#k But thisonlyshify the problem, since it presupposes criteriafi sameness on the basisof which something can be established to be non-triviallydi#erent f"z that which alreadyexists. To distinguish noveltyfy" moreof the same isn't a simple a#air. United States patent law defines noveltybya seriesof complex definitions (35 U.S.C
Post war market, sales and industrial progress survey of the hardware, electrical and metal industries; fifth in a new series of six post war industrial surveys, with special attention to packaging problems,
Cover-title.Mode of access: Internet
Post war market, sales and industrial progress survey of the paper products, stationery and allied lines; fourth in a new series of six post war industrial surveys, with special attention to packaging problems; compiled for the Post war planning committee of the National paper box manufacturers association, Philadelphia, Pa. ...
Reproduced from type-written copy.Cover title.Mode of access: Internet
Nanoarchaeum equitans and Ignicoccus hospitalis: New Insights into a Unique, Intimate Association of Two Archaea▿
Nanoarchaeum equitans and Ignicoccus hospitalis represent a unique, intimate association of two archaea. Both form a stable coculture which is mandatory for N. equitans but not for the host I. hospitalis. Here, we investigated interactions and mutual influence between these microorganisms. Fermentation studies revealed that during exponential growth only about 25% of I. hospitalis cells are occupied by N. equitans cells (one to three cells). The latter strongly proliferate in the stationary phase of I. hospitalis, until 80 to 90% of the I. hospitalis cells carry around 10 N. equitans cells. Furthermore, the expulsion of H2S, the major metabolic end product of I. hospitalis, by strong gas stripping yields huge amounts of free N. equitans cells. N. equitans had no influence on the doubling times, final cell concentrations, and growth temperature, pH, or salt concentration ranges or optima of I. hospitalis. However, isolation studies using optical tweezers revealed that infection with N. equitans inhibited the proliferation of individual I. hospitalis cells. This inhibition might be caused by deprivation of the host of cell components like amino acids, as demonstrated by 13C-labeling studies. The strong dependence of N. equitans on I. hospitalis was affirmed by live-dead staining and electron microscopic analyses, which indicated a tight physiological and structural connection between the two microorganisms. No alternative hosts, including other Ignicoccus species, were accepted by N. equitans. In summary, the data show a highly specialized association of N. equitans and I. hospitalis which so far cannot be assigned to a classical symbiosis, commensalism, or parasitism
Mutated olfactomedin 1 in the interphotoreceptor matrix of the mouse retina causes functional deficits and vulnerability to light damage
Olfactomedin 1 (OLFM1) is a secreted glycoprotein and member of the olfactomedin protein family, which is preferentially expressed in various areas throughout the central nervous system. To learn about the functional properties of OLFM1 in the eye, we investigated its localization in the mouse and pig eye. In addition, we analyzed the ocular phenotype of Olfm1 mutant mice in which 52 amino acids were deleted in the central part (M2 region) of OLFM1. OLFM1 was detected in cornea, sclera, retina, and optic nerve of both wild-type and Olfm1 mutant littermates. By immunohistochemistry and double labeling with the lectin peanut agglutinin, OLFM1 was found in the interphotoreceptor matrix (IPM) of mouse and pig retina where it was directly localized to the inner segments of photoreceptors. Western blotting confirmed the presence of the OLFM1 isoforms pancortin 1 (BMY) and pancortin 2 (BMZ) in the IPM. The retinal phenotype of Olfm1 mutant mice did not obviously differ from that of wild-type littermates. In addition, outer nuclear layer (ONL) and total retinal thickness were not different, and the same was true for the area of the optic nerve in cross sections. Functional changes were observed though by electroretinography, which showed significantly lower a- and b-wave amplitudes in Olfm1 mutant mice when compared to age-matched wild-type mice. When light damage experiments were performed as an experimental paradigm of photoreceptor apoptosis, significantly more TUNEL-positive cells were observed in Olfm1 mutant mice 30 h after light exposure. One week after light exposure, the ONL was significantly thinner in Olfm1 mutant mice than in wild-type littermates indicating increased photoreceptor loss. No differences were observed when rhodopsin turnover or ERK1/2 signaling was investigated. We conclude that OLFM1 is a newly identified IPM molecule that serves an important role for photoreceptor homeostasis, which is significantly compromised in the eyes of Olfm1 mutant mice