34 research outputs found

    Optimal Control for Open Quantum Systems: Qubits and Quantum Gates

    Full text link
    This article provides a review of recent developments in the formulation and execution of optimal control strategies for the dynamics of quantum systems. A brief introduction to the concept of optimal control, the dynamics of of open quantum systems, and quantum information processing is followed by a presentation of recent developments regarding the two main tasks in this context: state-specific and state-independent optimal control. For the former, we present an extension of conventional theory (Pontryagin's principle) to quantum systems which undergo a non-Markovian time-evolution. Owing to its importance for the realization of quantum information processing, the main body of the review, however, is devoted to state-independent optimal control. Here, we address three different approaches: an approach which treats dissipative effects from the environment in lowest-order perturbation theory, a general method based on the time--evolution superoperator concept, as well as one based on the Kraus representation of the time-evolution superoperator. Applications which illustrate these new methods focus on single and double qubits (quantum gates) whereby the environment is modeled either within the Lindblad equation or a bath of bosons (spin-boson model). While these approaches are widely applicable, we shall focus our attention to solid-state based physical realizations, such as semiconductor- and superconductor-based systems. While an attempt is made to reference relevant and representative work throughout the community, the exposition will focus mainly on work which has emerged from our own group.Comment: 27 pages, 18 figure

    Proposal for a ferromagnetic multiwell spin oscillator

    Full text link
    The highly nonlinear coupling of transport and magnetic properties in a multiwell heterostructure, which comprises ferromagnetic quantum wells made of diluted magnetic semiconductors, is theoretically investigated. The interplay of resonant tunneling and carrier-mediated ferromagnetism in the magnetic wells induces very robust, self-sustained current and magnetization oscillations. Over a large window of steady bias voltages the spin polarization of the collector current is oscillating between positive and negative values, realizing a spin oscillator device.Comment: 3 pages, 4 figure

    Dirac fermion wave guide networks on topological insulator surfaces

    Full text link
    Magnetic texturing on the surface of a topological insulator allows the design of wave guide networks and beam splitters for domain-wall Dirac fermions. Guided by simple analytic arguments we model a Dirac fermion interferometer consisting of two parallel pathways, whereby a newly developed staggered-grid leap-frog discretization scheme in 2+1 dimensions with absorbing boundary conditions is employed. The net transmission can be tuned between constructive to destructive interference, either by variation of the magnetization (path length) or an applied bias (wave length). Based on this principle, a Dirac fermion transistor is proposed. Extensions to more general networks are discussed.Comment: Submitted to PR
    corecore