50 research outputs found
The Neuropsychological Assessment of Cognitive Deficits Considering Measures of Performance Variability
Neuropsychologists often face interpretational difficulties when assessing cognitive deficits, particularly in cases of unclear cerebral etiology. How can we be sure whether a single test score below the population average is indicative of a pathological brain condition or normal? In the past few years, the topic of intra-individual performance variability has gained great interest. On the basis of a large normative sample, two measures of performance variability and their importance for neuropsychological interpretation will be presented in this paper: the number of low scores and the level of dispersion. We conclude that low scores are common in healthy individuals. On the other hand, the level of dispersion is relatively small. Here, base rate information about abnormally low scores and abnormally high dispersion across cognitive abilities are provided to improve the awareness of normal variability and to serve clinicians as additional interpretive measures in the diagnostic proces
Dynamical cluster-decay model for hot and rotating light-mass nuclear systems, applied to low-energy S + Mg Ni reaction
The dynamical cluster-decay model (DCM) is developed further for the decay of
hot and rotating compound nuclei (CN) formed in light heavy-ion reactions. The
model is worked out in terms of only one parameter, namely the neck-length
parameter, which is related to the total kinetic energy TKE(T) or effective
Q-value at temperature T of the hot CN, defined in terms of the
both the light-particles (LP), with 4, Z 2, as well as the
complex intermediate mass fragments (IMF), with , is
considered as the dynamical collective mass motion of preformed clusters
through the barrier. Within the same dynamical model treatment, the LPs are
shown to have different characteristics as compared to the IMFs. The systematic
variation of the LP emission cross section , and IMF emission
cross section , calculated on the present DCM match exactly the
statistical fission model predictions. It is for the first time that a
non-statistical dynamical description is developed for the emission of
light-particles from the hot and rotating CN. The model is applied to the decay
of Ni formed in the S + Mg reaction at two incident
energies E = 51.6 and 60.5 MeV. Both the IMFs and average
spectra are found to compare reasonably nicely with the experimental data,
favoring asymmetric mass distributions. The LPs emission cross section is shown
to depend strongly on the type of emitted particles and their multiplicities
Exploring the Partonic Structure of Hadrons through the Drell-Yan Process
The Drell-Yan process is a standard tool for probing the partonic structure
of hadrons. Since the process proceeds through a quark-antiquark annihilation,
Drell-Yan scattering possesses a unique ability to selectively probe sea
distributions. This review examines the application of Drell-Yan scattering to
elucidating the flavor asymmetry of the nucleon's sea and nuclear modifications
to the sea quark distributions in unpolarized scattering. Polarized beams and
targets add an exciting new dimension to Drell-Yan scattering. In particular,
the two initial-state hadrons give Drell-Yan sensitivity to chirally-odd
transversity distributions.Comment: 23 pages, 9 figures, to appear in J. Phys. G, resubmission corrects
typographical error
The ALICE experiment at the CERN LHC
ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008