182 research outputs found
Magnetic field dependence of the penetration depth of d-wave superconductors with strong isolated impurities
A d-wave superconductor with isolated strong non-magnetic impurities should
exhibit an upturn in the penetration depth at low temperatures. Here we
calculate how an external magnetic field supresses this effect.Comment: 2 pages, 1 figure, to appear in Physica C (proceedings for the
M2S-RIO Conference, May 25-30, Rio de Janeiro, Brazil
Evidence for Surface Andreev Bound states in Cuprate Superconductors from Penetration Depth Measurements
Tunneling and theoretical studies have suggested that Andreev bound states
form at certain surfaces of unconventional superconductors. Through studies of
the temperature and field dependence of the in-plane magnetic penetration depth
lambda_ab at low temperature, we have found strong evidence for the presence of
these states in clean single crystal YBCO and BSCCO. Crystals cut to expose a
[110] interface show a strong upturn in lambda_ab at around 7K, when the field
is oriented so that the supercurrents flow around this surface. In YBCO this
upturn is completely suppressed by a field of ~0.1 T.Comment: 4 pages 2 column revtex + 4 postscript figures. Submitted to PR
Zero-energy Andreev surface bound states in the lattice model
The conditions for zero-energy Andreev surface bound states to exist are
found for the lattice model of d-wave superconductor with arbitrary surface
orientation. Both nearest neighbors and next nearest neighbors models are
considered. It is shown that the results are very sensitive to the surface
orientation. In particular, for half-filled -surface zero-energy Andreev
surface states only appear under the condition that and are odd
simultaneouslyComment: 9 pages, 1 figur
Free Energy and Magnetic Penetration Depth of a -Wave Superconductor in the Meissner State
We investigate the free energy and the penetration depth of a
quasi-two-dimensional d-wave superconductor in the presence of a weak magnetic
field by taking account of thermal, nonlocal and nonlinear effects. In an
approximation in which the superfluid velocity is assumed to be slowly
varying, the free energy is calculated and compared with available results in
several limiting cases. It is shown that either nonlocal or nonlinear effects
may cut off the linear- dependence of both the free energy and the
penetration depth in all the experimental geometries. At extremely low , the
nonlocal effects will also generically modify the linear dependence of the
penetration depth ("nonlinear Meissner effect") in most experimental
geometries, but for supercurrents oriented along the nodal directions, the
effect may be recovered. We compare our predictions with existing experiments
on the cuprate superconductors.Comment: 18 revtex pages with 4 eps figures, final versio
Epitope Mapping and Topographic Analysis of VAR2CSA DBL3X Involved in P. falciparum Placental Sequestration
Pregnancy-associated malaria is a major health problem, which mainly affects primigravidae living in malaria endemic areas. The syndrome is precipitated by accumulation of infected erythrocytes in placental tissue through an interaction between chondroitin sulphate A on syncytiotrophoblasts and a parasite-encoded protein on the surface of infected erythrocytes, believed to be VAR2CSA. VAR2CSA is a polymorphic protein of approximately 3,000 amino acids forming six Duffy-binding-like (DBL) domains. For vaccine development it is important to define the antigenic targets for protective antibodies and to characterize the consequences of sequence variation. In this study, we used a combination of in silico tools, peptide arrays, and structural modeling to show that sequence variation mainly occurs in regions under strong diversifying selection, predicted to form flexible loops. These regions are the main targets of naturally acquired immunoglobulin gamma and accessible for antibodies reacting with native VAR2CSA on infected erythrocytes. Interestingly, surface reactive anti-VAR2CSA antibodies also target a conserved DBL3X region predicted to form an α-helix. Finally, we could identify DBL3X sequence motifs that were more likely to occur in parasites isolated from primi- and multigravidae, respectively. These findings strengthen the vaccine candidacy of VAR2CSA and will be important for choosing epitopes and variants of DBL3X to be included in a vaccine protecting women against pregnancy-associated malaria
A Novel System of Polymorphic and Diverse NK Cell Receptors in Primates
There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in “higher” primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire
Lactobacillus Adhesion to Mucus
Mucus provides protective functions in the gastrointestinal tract and plays an important role in the adhesion of microorganisms to host surfaces. Mucin glycoproteins polymerize, forming a framework to which certain microbial populations can adhere, including probiotic Lactobacillus species. Numerous mechanisms for adhesion to mucus have been discovered in lactobacilli, including partially characterized mucus binding proteins. These mechanisms vary in importance with the in vitro models studied, which could significantly affect the perceived probiotic potential of the organisms. Understanding the nature of mucus-microbe interactions could be the key to elucidating the mechanisms of probiotic adhesion within the host
Expression and Membrane Topology of Anopheles gambiae Odorant Receptors in Lepidopteran Insect Cells
A lepidopteran insect cell-based expression system has been employed to express three Anopheles gambiae odorant receptors (ORs), OR1 and OR2, which respond to components of human sweat, and OR7, the ortholog of Drosophila's OR83b, the heteromerization partner of all functional ORs in that system. With the aid of epitope tagging and specific antibodies, efficient expression of all ORs was demonstrated and intrinsic properties of the proteins were revealed. Moreover, analysis of the orientation of OR1 and OR2 on the cellular plasma membrane through the use of a novel ‘topology screen’ assay and FACS analysis demonstrates that, as was recently reported for the ORs in Drosophila melanogaster, mosquito ORs also have a topology different than their mammalian counterparts with their N-terminal ends located in the cytoplasm and their C-terminal ends facing outside the cell. These results set the stage for the production of mosquito ORs in quantities that should permit their detailed biochemical and structural characterization and the exploration of their functional properties
Structural basis for both pro- and anti-inflammatory response induced by mannose-specific legume lectin from Cymbosema roseum
Legume lectins, despite high sequence homology, express diverse biological activities that vary in potency and efficacy. In studies reported here, the mannose-specific lectin from Cymbosema roseum (CRLI), which binds N-glycoproteins, shows both pro-inflammatory effects when administered by local injection and anti-inflammatory effects when by systemic injection. Protein sequencing was obtained by Tandem Mass Spectrometry and the crystal structure was solved by X-ray crystallography using a Synchrotron radiation source. Molecular replacement and refinement were performed using CCP4 and the carbohydrate binding properties were described by affinity assays and computational docking. Biological assays were performed in order to evaluate the lectin edematogenic activity. The crystal structure of CRLI was established to a 1.8 Å resolution in order to determine a structural basis for these differing activities. The structure of CRLI is closely homologous to those of other legume lectins at the monomer level and assembles into tetramers as do many of its homologues. The CRLI carbohydrate binding site was predicted by docking with a specific inhibitory trisaccharide. CRLI possesses a hydrophobic pocket for the binding of α-aminobutyric acid and that pocket is occupied in this structure as are the binding sites for calcium and manganese cations characteristic of legume lectins. CRLI route-dependent effects for acute inflammation are related to its carbohydrate binding domain (due to inhibition caused by the presence of α-methyl-mannoside), and are based on comparative analysis with ConA crystal structure. This may be due to carbohydrate binding site design, which differs at Tyr12 and Glu205 position. © 2011 Elsevier Masson SAS. All rights reserved
- …