218 research outputs found
Flow carbonylation of sterically hindered ortho-substituted iodoarenes
The flow synthesis of ortho-substituted carboxylic acids, using carbon monoxide gas, has been studied for a number of substrates. The optimised conditions make use of a simple catalyst system compromising of triphenylphosphine as the ligand and palladium acetate as the pre-catalyst. Carbon monoxide was introduced via a reverse âtube-in-tubeâ flow reactor at elevated pressures to give yields of carboxylated products that are much higher than those obtained under normal batch conditions
Catalytic ChanâLam coupling using a âtube-in-tubeâ reactor to deliver molecular oxygen as an oxidant
A flow system to perform ChanâLam coupling reactions of various amines and arylboronic acids has been realised employing molecular oxygen as an oxidant for the re-oxidation of the copper catalyst enabling a catalytic process. A tube-in-tube gas reactor has been used to simplify the delivery of the oxygen accelerating the optimisation phase and allowing easy access to elevated pressures. A small exemplification library of heteroaromatic products has been prepared and the process has been shown to be robust over extended reaction times
S3 x Z2 model for neutrino mass matrices
We propose a model for lepton mass matrices based on the seesaw mechanism, a
complex scalar gauge singlet and a horizontal symmetry S_3 \times
\mathbbm{Z}_2. In a suitable weak basis, the charged-lepton mass matrix and
the neutrino Dirac mass matrix are diagonal, but the vacuum expectation value
of the scalar gauge singlet renders the Majorana mass matrix of the
right-handed neutrinos non-diagonal, thereby generating lepton mixing. When the
symmetry is not broken in the scalar potential, the effective
light-neutrino Majorana mass matrix enjoys -- interchange symmetry,
thus predicting maximal atmospheric neutrino mixing together with .
A partial and less predictive form of -- interchange symmetry is
obtained when the symmetry is softly broken in the scalar potential.
Enlarging the symmetry group S_3 \times \mathbbm{Z}_2 by an additional
discrete electron-number symmetry \mathbbm{Z}_2^{(e)}, a more predicitive
model is obtained, which is in practice indistinguishable from a previous one
based on the group .Comment: 13 pages, 3 figures, final version for publication in JHE
Closed-Time Path Integral Formalism and Medium Effects of Non-Equilibrium QCD Matter
We apply the closed-time path integral formalism to study the medium effects
of non-equilibrium gluon matter. We derive the medium modified resummed gluon
propagator to the one loop level in non-equilibrium in the covariant gauge. The
gluon propagator we derive can be used to remove the infrared divergences in
the secondary parton collisions to study thermalization of minijet parton
plasma at RHIC and LHC.Comment: Final version, To appear in Physical Review D, Minor modification,
reference adde
Discriminating among Earth composition models using geo-antineutrinos
It has been estimated that the entire Earth generates heat corresponding to
about 40 TW (equivalent to 10,000 nuclear power plants) which is considered to
originate mainly from the radioactive decay of elements like U, Th and K,
deposited in the crust and mantle of the Earth. Radioactivity of these elements
produce not only heat but also antineutrinos (called geo-antineutrinos) which
can be observed by terrestrial detectors. We investigate the possibility of
discriminating among Earth composition models predicting different total
radiogenic heat generation, by observing such geo-antineutrinos at Kamioka and
Gran Sasso, assuming KamLAND and Borexino (type) detectors, respectively, at
these places. By simulating the future geo-antineutrino data as well as reactor
antineutrino background contributions, we try to establish to which extent we
can discriminate among Earth composition models for given exposures (in units
of kt yr) at these two sites on our planet. We use also information on
neutrino mixing parameters coming from solar neutrino data as well as KamLAND
reactor antineutrino data, in order to estimate the number of geo-antineutrino
induced events.Comment: 24 pages, 10 figures, final version to appear in JHE
Group space scan of flavor symmetries for nearly tribimaximal lepton mixing
We present a systematic group space scan of discrete Abelian flavor
symmetries for lepton mass models that produce nearly tribimaximal lepton
mixing. In our models, small neutrino masses are generated by the type-I seesaw
mechanism. The lepton mass matrices emerge from higher-dimension operators via
the Froggatt-Nielsen mechanism and are predicted as powers of a single
expansion parameter \epsilon that is of the order of the Cabibbo angle
\theta_C\simeq 0.2. We focus on solutions that can give close to tribimaximal
lepton mixing with a very small reactor angle \theta_{13}\approx 0 and find
several thousand explicit such models that provide an excellent fit to current
neutrino data. The models are rather general in the sense that large leptonic
mixings can come from the charged leptons and/or neutrinos. Moreover, in the
neutrino sector, both left- and right-handed neutrinos can mix maximally. We
also find a new relation \theta_{13}\lesssim\epsilon^3 for the reactor angle
and a new sum rule \theta_{23}\approx\pi/4+\epsilon/\sqrt{2} for the
atmospheric angle, allowing the models to be tested in future neutrino
oscillation experiments.Comment: 18 pages, 2 tables, 2 figures, references added, final version to
appear in JHE
The primary cosmic ray composition between 10**15 and 10**16 eV from Extensive Air Showers electromagnetic and TeV muon data
The cosmic ray primary composition in the energy range between 10**15 and
10**16 eV, i.e., around the "knee" of the primary spectrum, has been studied
through the combined measurements of the EAS-TOP air shower array (2005 m
a.s.l., 10**5 m**2 collecting area) and the MACRO underground detector (963 m
a.s.l., 3100 m w.e. of minimum rock overburden, 920 m**2 effective area) at the
National Gran Sasso Laboratories. The used observables are the air shower size
(Ne) measured by EAS-TOP and the muon number (Nmu) recorded by MACRO. The two
detectors are separated on average by 1200 m of rock, and located at a
respective zenith angle of about 30 degrees. The energy threshold at the
surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons
are produced in the early stages of the shower development and in a kinematic
region quite different from the one relevant for the usual Nmu-Ne studies. The
measurement leads to a primary composition becoming heavier at the knee of the
primary spectrum, the knee itself resulting from the steepening of the spectrum
of a primary light component (p, He). The result confirms the ones reported
from the observation of the low energy muons at the surface (typically in the
GeV energy range), showing that the conclusions do not depend on the production
region kinematics. Thus, the hadronic interaction model used (CORSIKA/QGSJET)
provides consistent composition results from data related to secondaries
produced in a rapidity region exceeding the central one. Such an evolution of
the composition in the knee region supports the "standard" galactic
acceleration/propagation models that imply rigidity dependent breaks of the
different components, and therefore breaks occurring at lower energies in the
spectra of the light nuclei.Comment: Submitted to Astroparticle Physic
Measurement of the residual energy of muons in the Gran Sasso underground Laboratories
The MACRO detector was located in the Hall B of the Gran Sasso underground
Laboratories under an average rock overburden of 3700 hg/cm^2. A transition
radiation detector composed of three identical modules, covering a total
horizontal area of 36 m^2, was installed inside the empty upper part of the
detector in order to measure the residual energy of muons. This paper presents
the measurement of the residual energy of single and double muons crossing the
apparatus. Our data show that double muons are more energetic than single ones.
This measurement is performed over a standard rock depth range from 3000 to
6500 hg/cm^2.Comment: 28 pages, 9 figure
Muon Energy Estimate Through Multiple Scattering with the Macro Detector
Muon energy measurement represents an important issue for any experiment
addressing neutrino induced upgoing muon studies. Since the neutrino
oscillation probability depends on the neutrino energy, a measurement of the
muon energy adds an important piece of information concerning the neutrino
system. We show in this paper how the MACRO limited streamer tube system can be
operated in drift mode by using the TDC's included in the QTPs, an electronics
designed for magnetic monopole search. An improvement of the space resolution
is obtained, through an analysis of the multiple scattering of muon tracks as
they pass through our detector. This information can be used further to obtain
an estimate of the energy of muons crossing the detector. Here we present the
results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines,
to provide a full check of the electronics and to exploit the feasibility of
such a multiple scattering analysis. We show that by using a neural network
approach, we are able to reconstruct the muon energy for 40 GeV. The
test beam data provide an absolute energy calibration, which allows us to apply
this method to MACRO data.Comment: 25 pages, 11 figures, Submitted to Nucl. Instr. & Meth.
Low energy atmospheric muon neutrinos in MACRO
We present the measurement of two event samples induced by atmospheric
of average energy . In the first sample,
the neutrino interacts inside the MACRO detector producing an upward-going muon
leaving the apparatus. The ratio of the number of observed to expected events
is with an angular
distribution similar to that expected from the Bartol atmospheric neutrino
flux. The second is a mixed sample of internally produced downward-going muons
and externally produced upward-going muons stopping inside the detector. These
two subsamples are selected by topological criteria; the lack of timing
information makes it impossible to distinguish stopping from downgoing muons.
The ratio of the number of observed to expected events is . Using the ratio of the two subsamples (for
which most theoretical uncertainties cancel) we can test the pathlength
dependence of the oscillation hypothesis. The probability of agreement with the
no-oscillation hypothesis is 5% .
The deviations of our observations from the expectations has a preferred
interpretation in terms of oscillations with maximal mixing and
. These parameters are in agreement
with our results from upward throughgoing muons, induced by of much
higher energies.Comment: 7 pages, 6 figures. Submitted to Phys. Lett.
- âŠ