630 research outputs found

    Cyclobutanone Inhibitor of Cobalt-Functionalized Metallo-γ-Lactonase AiiA with Cyclobutanone Ring Opening in the Active Site

    Get PDF
    An α-amido cyclobutanone possessing a C10 hydrocarbon tail was designed as a potential transition-state mimetic for the quorum-quenching metallo-γ-lactonase autoinducer inactivator A (AiiA) with the support of in-house modeling techniques and found to be a competitive inhibitor of dicobalt(II) AiiA with an inhibition constant of Ki = 0.007 ± 0.002 mM. The catalytic mechanism of AiiA was further explored using our product-based transition-state modeling (PBTSM) computational approach, providing substrate-intermediate models arising during enzyme turnover and further insight into substrate–enzyme interactions governing native substrate catalysis. These interactions were targeted in the docking of cyclobutanone hydrates into the active site of AiiA. The X-ray crystal structure of dicobalt(II) AiiA cocrystallized with this cyclobutanone inhibitor unexpectedly revealed an N-(2-oxocyclobutyl)decanamide ring-opened acyclic product bound to the enzyme active site (PDB 7L5F). The C10 alkyl chain and its interaction with the hydrophobic phenylalanine clamp region of AiiA adjacent to the active site enabled atomic placement of the ligand atoms, including the C10 alkyl chain. A mechanistic hypothesis for the ring opening is proposed involving a radical-mediated process

    Meeting Report: Consensus Statement—Parkinson’s Disease and the Environment: Collaborative on Health and the Environment and Parkinson’s Action Network (CHE PAN) Conference 26–28 June 2007

    Get PDF
    BackgroundParkinson's disease (PD) is the second most common neurodegenerative disorder. People with PD, their families, scientists, health care providers, and the general public are increasingly interested in identifying environmental contributors to PD risk.MethodsIn June 2007, a multidisciplinary group of experts gathered in Sunnyvale, California, USA, to assess what is known about the contribution of environmental factors to PD.ResultsWe describe the conclusions around which they came to consensus with respect to environmental contributors to PD risk. We conclude with a brief summary of research needs.ConclusionsPD is a complex disorder, and multiple different pathogenic pathways and mechanisms can ultimately lead to PD. Within the individual there are many determinants of PD risk, and within populations, the causes of PD are heterogeneous. Although rare recognized genetic mutations are sufficient to cause PD, these account for < 10% of PD in the U.S. population, and incomplete penetrance suggests that environmental factors may be involved. Indeed, interplay among environmental factors and genetic makeup likely influences the risk of developing PD. There is a need for further understanding of how risk factors interact, and studying PD is likely to increase understanding of other neurodegenerative disorders

    Caribbean Corals in Crisis: Record Thermal Stress, Bleaching, and Mortality in 2005

    Get PDF
    BACKGROUND The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. METHODOLOGY/PRINCIPAL FINDINGS Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. CONCLUSIONS/SIGNIFICANCE Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch's Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate.This work was partially supported by salaries from the NOAA Coral Reef Conservation Program to the NOAA Coral Reef Conservation Program authors. NOAA provided funding to Caribbean ReefCheck investigators to undertake surveys of bleaching and mortality. Otherwise, no funding from outside authors' institutions was necessary for the undertaking of this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The atomic simulation environment — a python library for working with atoms

    Get PDF
    The Atomic Simulation Environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simula- tions. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple "for-loop" construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations

    Reduction of iron (III) and humic substances plays a major role in anaerobic respiration in an Arctic peat soil

    Get PDF
    Arctic peat soils contain vast reserves of organic C and are largely anaerobic. However, anaerobic respiration, particularly the role of Fe(III) and humic substances as electron acceptors, is not well understood in such ecosystems. We investigated these processes in a drained thaw lake basin on the Arctic coastal plain near Barrow, Alaska. We measured concentrations of soluble Fe and other potential electron acceptors, described the microbial community, and performed experiments in the laboratory and field to measure net rates of Fe(III) reduction and the relationship of this process to C cycling. In most areas within the basin, aerobic conditions existed only in the upper few centimeters of soil, though oxygen penetrated deeper in raised areas, such as rims of ice wedge polygons. Concentrations of nitrate and sulfate in soil pore water were low or negligible. Soil pore water contained surprisingly high concentrations of Fe(II) and Fe(III), in the range of hundreds of μM, suggesting the presence of organic chelators. The solid phase contained substantial amounts of iron minerals, with a progressively reduced oxidation state throughout the growing season. The most abundant 16S rRNA sequence in our gene survey was closely related to the Fe(III)-reducing bacterium, Rhodoferax ferrireducens, and other sequences closely related to Fe-transforming bacteria were found. Field and laboratory incubations with soluble Fe(III) and the quinonic compound, AQDS (a common humic analog), stimulated respiration and verified that Fe(III) reduction occurs in these soils. We conclude that reduction of Fe(III) and humic substances are major metabolic pathways in this ecosystem

    Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein

    Get PDF
    Vaccinia virus (VACV) encodes many immunomodulatory proteins, including inhibitors of apoptosis and modulators of innate immune signalling. VACV protein N1 is an intracellular homodimer that contributes to virus virulence and was reported to inhibit nuclear factor (NF)-κB signalling. However, analysis of NF-κB signalling in cells infected with recombinant viruses with or without the N1L gene showed no difference in NF-κB-dependent gene expression. Given that N1 promotes virus virulence, other possible functions of N1 were investigated and this revealed that N1 is an inhibitor of apoptosis in cells transfected with the N1L gene and in the context of VACV infection. In support of this finding virally expressed N1 co-precipitated with endogenous pro-apoptotic Bcl-2 proteins Bid, Bad and Bax as well as with Bad and Bax expressed by transfection. In addition, the crystal structure of N1 was solved to 2.9 Å resolution (0.29 nm). Remarkably, although N1 shows no sequence similarity to cellular proteins, its three-dimensional structure closely resembles Bcl-xL and other members of the Bcl-2 protein family. The structure also reveals that N1 has a constitutively open surface groove similar to the grooves of other anti-apoptotic Bcl-2 proteins, which bind the BH3 motifs of pro-apoptotic Bcl-2 family members. Molecular modelling of BH3 peptides into the N1 surface groove, together with analysis of their physico-chemical properties, suggests a mechanism for the specificity of peptide recognition. This study illustrates the importance of the evolutionary conservation of structure, rather than sequence, in protein function and reveals a novel anti-apoptotic protein from orthopoxviruses

    Mono- or Double-Site Phosphorylation Distinctly Regulates the Proapoptotic Function of Bax

    Get PDF
    Bax is the major multidomain proapoptotic molecule that is required for apoptosis. It has been reported that phosphorylation of Bax at serine(S) 163 or S184 activates or inactivates its proapoptotic function, respectively. To uncover the mechanism(s) by which phosphorylation regulates the proapoptotic function of Bax, a series of serine (S)→ alanine/glutamate (A/E) Bax mutants, including S163A, S184A, S163E, S184E, S163E/S184A (EA), S163A/S184E (AE), S163A/S184A (AA) and S163E/S184E (EE), were created to abrogate or mimic, respectively, either single or double-site phosphorylation. The compound Bax mutants (i.e. EA and AE) can flesh out the functional contribution of individual phosphorylation site(s). WT and each of these Bax mutants were overexpressed in Bax−/− MEF or lung cancer H157 cells and the proapoptotic activities were compared. Intriguingly, expression of any of Bax mutants containing the mutation S→A at S184 (i.e. S184A, EA or AA) represents more potent proapoptotic activity as compared to WT Bax in association with increased 6A7 epitope conformational change, mitochondrial localization/insertion and prolonged half-life. In contrast, all Bax mutants containing the mutation S→E at S184 (i.e. S184E, AE or EE) have a mobility-shift and fail to insert into mitochondrial membranes with decreased protein stability and less apoptotic activity. Unexpectedly, mutation either S→A or S→E at S163 site does not significantly affect the proapoptotic activity of Bax. These findings indicate that S184 but not S163 is the major phosphorylation site for functional regulation of Bax's activity. Therefore, manipulation of the phosphorylation status of Bax at S184 may represent a novel strategy for cancer treatment

    Oxygen dynamics in permafrost thaw lakes: Anaerobic bioreactors in the Canadian subarctic

    Full text link
    Permafrost thaw lakes occur in high abundance across the subarctic landscape but little is known about their limnological dynamics. This study was undertaken to evaluate the hourly, seasonal, and depth variations in oxygen concentration in three thaw lakes in northern Quebec, Canada, across contrasting permafrost regimes (isolated, sporadic, and discontinuous). All lakes were well stratified in summer despite their shallow depths (2.7-4.0m), with hypoxic or anoxic bottom waters. Continuous automated measurements in each of the lakes showed a period of water column oxygenation over several weeks in fall followed by bottom-water anoxia soon after ice-up. Anoxic conditions extended to shallower depths (1m) over the course of winter, beginning 18-137 d after ice formation, depending on the lake. Full water column anoxia extended over 33-75% of the annual record. There was a brief period of incomplete spring mixing with partial or no reoxygenation of the bottom waters in each lake. Conductivity measurements showed the build-up of solutes in the bottom waters, and the resultant density increase contributed to the resistance to full mixing in spring. These observations indicate the prevalence of stratified conditions throughout most of the year and underscore the importance of the fall mixing period for gas exchange with the atmosphere. Given the long duration of anoxia, subarctic thaw lakes represent an ideal environment for anaerobic processes such as methane production. The intermittent oxygenation also favors intense methanotrophy and aerobic bacterial decomposition processes
    • …
    corecore