696 research outputs found

    Collective Feshbach scattering of a superfluid droplet from a mesoscopic two-component Bose-Einstein condensate

    Full text link
    We examine the collective scattering of a superfluid droplet impinging on a mesoscopic Bose-Einstein condensate (BEC) as a target. The BEC consists of an atomic gas with two internal electronic states, each of which is trapped by a finite-depth external potential. An off-resonant optical laser field provides a localized coupling between the BEC components in the trapping region. This mesoscopic scenario matches the microscopic setup for Feshbach scattering of two particles, when a bound state of one sub-manifold is embedded in the scattering continuum of the other sub-manifold. Within the mean-field picture, we obtain resonant scattering phase shifts from a linear response theory in agreement with an exact numerical solution of the real time scattering process and simple analytical approximations thereof. We find an energy-dependent transmission coefficient that is controllable via the optical field between 0 and 100%.Comment: 4 Latex pages, including 4 figure

    Formation of Pairing Fields in Resonantly Coupled Atomic and Molecular Bose-Einstein Condensates

    Full text link
    In this paper, we show that pair-correlations may play an important role in the quantum statistical properties of a Bose-Einstein condensed gas composed of an atomic field resonantly coupled with a corresponding field of molecular dimers. Specifically, pair-correlations in this system can dramatically modify the coherent and incoherent transfer between the atomic and molecular fields.Comment: 4 pages, 4 figure

    Equivalence of Kinetic Theories of Bose-Einstein Condensation

    Full text link
    We discuss the equivalence of two non-equilibrium kinetic theories that describe the evolution of a dilute, Bose-Einstein condensed atomic gas in a harmonic trap. The second-order kinetic equations of Walser et al. [PRA 63, 013607 (2001)] reduce to the Gross-Pitaevskii equation and the quantum Boltzmann equation in the low and high temperature limits, respectively. These kinetic equations can thus describe the system in equilibrium (finite temperature) as well as in non-equilibrium (real time). We have found this theory to be equivalent to the non-equilibrium Green's function approach originally proposed by Kadanoff and Baym and more recently applied to inhomogeneous trapped systems by M. Imamovi\'c-Tomasovi\'c and A. Griffin [arXiv:cond-mat/9911402].Comment: REVTeX3, 6 pages, 2 eps figures, published version, minor change

    The effect of force-field parameters on properties of liquids:Parametrization of a simple three-site model for methanol

    Get PDF
    A simple rigid three-site model for methanol compatible with the simple point charge (SPC) water and the GROMOS96 force field is parametrized and tested. The influence of different force-field parameters, such as the methanol geometry and the charge distribution on several properties calculated by molecular dynamics is investigated. In particular an attempt was made to obtain good agreement with experimental data for the static dielectric constant and the mixing enthalpy with water. The model is compared to other methanol models from the literature in terms of the ability to reproduce a range of experimental properties.<br/

    Dropping cold quantum gases on Earth over long times and large distances

    Full text link
    We describe the non-relativistic time evolution of an ultra-cold degenerate quantum gas (bosons/fermions) falling in Earth's gravity during long times (10 sec) and over large distances (100 m). This models a drop tower experiment that is currently performed by the QUANTUS collaboration at ZARM (Bremen, Germany). Starting from the classical mechanics of the drop capsule and a single particle trapped within, we develop the quantum field theoretical description for this experimental situation in an inertial frame, the corotating frame of the Earth, as well as the comoving frame of the drop capsule. Suitable transformations eliminate non-inertial forces, provided all external potentials (trap, gravity) can be approximated with a second order Taylor expansion around the instantaneous trap center. This is an excellent assumption and the harmonic potential theorem applies. As an application, we study the quantum dynamics of a cigar-shaped Bose-Einstein condensate in the Gross-Pitaevskii mean-field approximation. Due to the instantaneous transformation to the rest-frame of the superfluid wave packet, the long-distance drop (100m) can be studied easily on a numerical grid.Comment: 18 pages latex, 5 eps figures, submitte
    • …
    corecore