17 research outputs found

    New Methods for the Synthesis of ArPdL 2

    No full text

    Performance impact of dynamic surface coatings on polymeric insulator-based dielectrophoretic particle separators

    No full text
    Efficient and robust particle separation and enrichment techniques are critical for a diverse range of lab-on-a-chip analytical devices including pathogen detection, sample preparation, high-throughput particle sorting, and biomedical diagnostics. Previously, using insulator-based dielectrophoresis (iDEP) in microfluidic glass devices, we demonstrated simultaneous particle separation and concentration of various biological organisms, polymer microbeads, and viruses. As an alternative to glass, we evaluate the performance of similar iDEP structures produced in polymer-based microfluidic devices. There are numerous processing and operational advantages that motivate our transition to polymers such as the availability of numerous innate chemical compositions for tailoring performance, mechanical robustness, economy of scale, and ease of thermoforming and mass manufacturing. The polymer chips we have evaluated are fabricated through an injection molding process of the commercially available cyclic olefin copolymer Zeonor 1060R. This publication is the first to demonstrate insulator-based dielectrophoretic biological particle differentiation in a polymeric device injection molded from a silicon master. The results demonstrate that the polymer devices achieve the same performance metrics as glass devices. We also demonstrate an effective means of enhancing performance of these microsystems in terms of system power demand through the use of a dynamic surface coating. We demonstrate that the commercially available nonionic block copolymer surfactant, Pluronic F127, has a strong interaction with the cyclic olefin copolymer at very low concentrations, positively impacting performance by decreasing the electric field necessary to achieve particle trapping by an order of magnitude. The presence of this dynamic surface coating, therefore, lowers the power required to operate such devices and minimizes Joule heating. The results of this study demonstrate that iDEP polymeric microfluidic devices with surfactant coatings provide an affordable engineering strategy for selective particle enrichment and sorting. [Figure not available: see fulltext.

    Effect of surfactants on electroosmotic flow and trapping behavior in a polymeric insulator-based dielectrophoretic (idep) device

    No full text
    We have previously reported on the use of insulator-based dielectrophoresis (iDEP) for the separation and concentration of biological particles in water. We have found that the applied DC field required to trap these particles depends on particle size, shape, and the zeta potential of the material utilized to form the device. In order to improve device performance, and decrease the power required for optimal performance, it is necessary to adjust one (or several) of these parameters. Surfactants are known to adsorb onto polymeric surfaces in a dynamic fashion, and have been utilized extensively to modify device performance in such related fields as capillary electrophoresis and micellar electrokinetic chromatography. We present here the effect of the anionic surfactant, sodium dodecyl sulfate, on the applied field strengths required to achieve effective isolation and trapping of polystyrene beads

    Injection molded microfluidic devices for biological sample separation and detection

    No full text
    We are developing a variety of microsystems for the separation and detection of biological samples. At the heart of these systems, inexpensive polymer microfluidic chips carry out sample preparation and analysis. Fabrication of polymer microfluidic chips involves the creation of a master in etched silicon or glass; plating of the master to produce a nickel stamp; large lot chip replication by injection molding; precision chip sealing; and chemical modification of channel surfaces. Separation chips rely on insulator-based dielectrophoresis for the separation of biological particles. Detection chips carry out capillary electrophoresis to detect fluorescent tags that identify specific biological samples. Since the performance and reliability of these microfluidic chips are very sensitive to fluidic impedance, electromagnetic flux, and zeta potential, the microchannel dimensions, shape, and surface chemistry have to be tightly controlled during chip fabrication and use. This paper will present an overview of chip design, fabrication, and testing. Dimensional metrology data, surface chemistry characterization, and chip performance data will be discussed in detail
    corecore