147 research outputs found
The Casimir energy of skyrmions in the 2+1-dimensional O(3)-model
One-loop quantum corrections to the classical vortices in 2+1 dimensional
O(3)-models are evaluated. Skyrme and Zeeman potential terms are used to
stabilize the size of topological solitons. Contributions from zero modes,
bound-states and scattering phase-shifts are calculated for vortices with
winding index n=1 and n=2. For both cases the S-matrix shows a pronounced
series of resonances for magnon-vortex scattering in analogy to the
well-established baryon resonances in hadron physics, while vortices with n>2
are already classically unstable against decay. The quantum corrections
destabilize the classically bound n=2 configuration. Approximate independence
of the results with respect to changes in the renormalization scale is
demonstrated.Comment: 24 pages LaTeX, 14 figure
Strangeness, charm and bottom in a chiral quark-meson model
In this paper we investigate an SU(3) extension of the chiral quark-meson
model. The spectra of baryons with strangeness, charm and bottom are considered
within a "rigid oscillator" version of this model. The similarity between the
quark part of the Lagrangian in the model and the Wess-Zumino term in the
Skyrme model is noted. The binding energies of baryonic systems with baryon
number B=2 and 3 possessing strangeness or heavy flavor are estimated. The
results obtained are in good qualitative agreement with those obtained
previously in the topological soliton (Skyrme) model.Comment: 12 pages, no figures. Journal ref: submitted to Nucl.Phys.
Evidence for the positive-strangeness pentaquark in photoproduction with the SAPHIR detector at ELSA
The positive--strangeness baryon resonance is observed in
photoproduction of the final state with the SAPHIR detector at
the Bonn ELectron Stretcher Accelerator ELSA. It is seen as a peak in the invariant mass distribution with a confidence level. We find
a mass MeV and an upper limit of the width
MeV at 90% c.l. From the absence of a signal in
the invariant mass distribution in at the
expected strength we conclude that the must be isoscalar.Comment: 9 pages, 4 figure
Four-modulus "Swiss Cheese" chiral models
We study the 'Large Volume Scenario' on explicit, new, compact, four-modulus
Calabi-Yau manifolds. We pay special attention to the chirality problem pointed
out by Blumenhagen, Moster and Plauschinn. Namely, we thoroughly analyze the
possibility of generating neutral, non-perturbative superpotentials from
Euclidean D3-branes in the presence of chirally intersecting D7-branes. We find
that taking proper account of the Freed-Witten anomaly on non-spin cycles and
of the Kaehler cone conditions imposes severe constraints on the models.
Nevertheless, we are able to create setups where the constraints are solved,
and up to three moduli are stabilized.Comment: 40 pages, 10 figures, clarifying comments added, minor mistakes
correcte
The fate of the homoctenids (Tentaculitoidea) during the Frasnian-Famennian mass extinction (Late Devonian)
The homoctenids (Tentaculitoidea) are small, conical-shelled marine animals which are amongst the most abundant and widespread of all Late Devonian fossils. They were a principal casualty of the Frasnian-Famennian (F-F, Late Devonian) mass extinction, and thus provide an insight into the extinction dynamics. Despite their abundance during the Late Devonian, they have been largely neglected by extinction studies. A number of Frasnian-Famennian boundary sections have been studied, in Poland, Germany, France, and the United States. These sections have yielded homoctenids, which allow precise recognition of the timing of the mass extinction. It is clear that the homoctenids almost disappear from the fossil record during the latest Frasnian âUpper Kellwasser Eventâ. The coincident extinction of this pelagic group, and the widespread development of intense marine anoxia within the water column, provides a causal link between anoxia and the F-F extinction. Most notable is the sudden demise of a group, which had been present in rock-forming densities, during this anoxic event. One new species, belonging to Homoctenus is described, but is not formally named here
Classification of Inflationary Einstein--Scalar--Field--Models via Catastrophe Theory
Various scenarios of the initial inflation of the universe are distinguished
by the choice of a scalar field {\em potential} which simulates a
{\it temporarily} non--vanishing {\em cosmological term}. Our new method, which
involves a reparametrization in terms of the Hubble expansion parameter ,
provides a classification of allowed inflationary potentials and of the
stability of the critical points. It is broad enough to embody all known {\it
exact} solutions involving one scalar field as special cases. Inflation
corresponds to the evolution of critical points of some catastrophe manifold.
The coalescence of its nondegenerate critical points with the creation of a
degenerate critical point corresponds the reheating phase of the universe. This
is illustrated by several examples.Comment: 12 pages, REVTeX, no figure
A comprehensive search for the \Theta^+ pentaquark on the lattice
We study spin 1/2 isoscalar and isovector, even and odd parity candidates for
the pentaquark particle using large scale lattice QCD
simulations. Previous lattice works led to inconclusive results because so far
it has not been possible to unambiguously identify the known scattering
spectrum and tell whether additionally a genuine pentaquark state also exists.
Here we carry out this analysis using several possible wave functions
(operators). Linear combinations of those have a good chance of spanning both
the scattering and pentaquark states. Our operator basis is the largest in the
literature, and it also includes spatially non-trivial ones with unit orbital
angular momentum. The cross correlator we compute is 1414 with 60
non-vanishing elements. We can clearly distinguish the lowest scattering
state(s) in both parity channels up to above the expected location of the
pentaquark, but we find no trace of the latter. Based on that we conclude that
there are most probably no pentaquark bound states at our quark masses,
corresponding to =400--630 MeV. However, we cannot rule out the
existence of a pentaquark state at the physical quark mass corresponding to
=135 MeV or pentaquarks with a more exotic wave function.Comment: 18 pages, 2 figure
Multibaryons in the collective coordinate approach to the SU(3) Skyrme model
We obtain the rotational spectrum of strange multibaryon states by performing
the SU(3) collective coordinate quantization of the static multi-Skyrmions.
These background configurations are given in terms of rational maps, which are
very good approximations and share the same symmetries as the exact solutions.
Thus, the allowed quantum numbers in the spectra and the structure of the
collective Hamiltonians we obtain are also valid in the exact case. We find
that the predicted spectra are in overall agreement with those corresponding to
the alternative bound state soliton model.Comment: 16 pages, 1 figur
Pentaquark as Kaon-Nucleon Resonance
Several recent experiments have reported evidence for a narrow feature in the
K(+)-neutron system, an apparent resonant state ~ 100 MeV above threshold and
with a width < 25 MeV. This state has been labelled as Theta(+) (previously as
Z(*)), and because of the implied inclusion of a anti-strange quark, is
referred to as a pentaquark, that is, five quarks within a single bag. We
present an alternative explanation for such a structure, as a higher angular
momentum resonance in the isospin zero K(+) -N system. One might call this an
exit channel or a molecular resonance. In a non-relativistic potential model we
find a possible candidate for the kaon-nucleon system with relative angular
momentum L=3, while L=1 and 2 states possess centrifugal barriers too low to
confine the kaon and nucleon in a narrow state at an energy so high above
threshold. A rather strong state-dependence in the potential is essential,
however, for eliminating an observable L=2 resonance at lower energies.Comment: 4 page
Loosely bound hyperons in the SU(3) Skyrme model
Hyperon pairs bound in deuteron like states are obtained within the SU(3)
Skyrme model in agreement with general expectations from boson exchange models.
The central binding from the flavor symmetry breaking terms increases with the
strangeness contents of the interacting baryons whereas the kinetic non-linear
-model term fixes the spin and isospin of the bound pair. We give a
complete account of the interactions of octet baryons within the product
approximation to baryon number configurations.Comment: 35 pages REVTEX including 2 figs, with 3 further figs available on
request from [email protected] or from [email protected]
SI-94-TP3S2; STPHY-Th/94-
- âŠ