29 research outputs found

    The first Swedish H1N2 swine influenza virus isolate represents an uncommon reassortant

    Get PDF
    The European swine influenza viruses (SIVs) show considerable diversity comprising different types of H1N1, H3N2, and H1N2 strains. The intensifying full genome sequencing efforts reveal further reassortants within these subtypes. Here we report the identification of an uncommon reassortant variant of H1N2 subtype influenza virus isolated from a pig in a multisite herd where H1N2 swine influenza was diagnosed for the first time in Sweden during the winter of 2008-2009. The majority of the European H1N2 swine influenza viruses described so far possess haemagglutinin (HA) of the human-like H1N2 SIV viruses and the neuraminidase (NA) of either the European H1N2 or H3N2 SIV-like viruses. The Swedish isolate has an avian-like SIV HA and a H3N2 SIV-like NA, which is phylogenetically more closely related to H3N2 SIV NAs from isolates collected in the early '80s than to the NA of H3N2 origin of the H1N2 viruses isolated during the last decade, as depicted by some German strains, indicative of independent acquisition of the NA genes for these two types of reassortants. The internal genes proved to be entirely of avian-like SIV H1N1 origin. The prevalence of this SIV variant in pig populations needs to be determined, as well as the suitability of the routinely used laboratory reagents to analyze this strain

    Dynamics of serum antibodies to and load of porcine circovirus type 2 (PCV2) in pigs in three finishing herds, affected or not by postweaning multisystemic wasting syndrome

    Get PDF
    Background: Despite that PMWS commonly affects pigs aged eight to sixteen weeks; most studies of PMWS have been conducted during the period before transfer to finishing herds. This study focused on PCV2 load and antibody dynamics in finishing herds with different PMWS status. Methods: Sequentially collected blood samples from 40 pigs in each of two Swedish (A and B) and one Norwegian (C) finishing herds were analysed for serum PCV2-load and -antibodies and saliva cortisol. The two Swedish herds differed in PMWS status, despite receiving animals from the same sow pool (multi-site production). However, the PMWS-deemed herd (A) had previously also received pigs from the spot market. ResultsThe initial serum PCV2 load was similar in the two Swedish herds. In herd A, it peaked after two weeks in the finishing herd and a high number of the pigs had serum PCV2 levels above 10(7) per ml. The antibody titres increased continually with exception for the pigs that developed PMWS, that had initially low and then declining antibody levels. Pigs in the healthy herd B also expressed high titres of antibodies to PCV2 on arrival but remained at that level throughout the study whereas the viral load steadily decreased. No PCV2 antibodies and only low amounts of PCV2 DNA were detected in serum collected during the first five weeks in the PMWS-free herd C. Thereafter a peak in serum PCV2 load accompanied by an antibody response was recorded. PCV2 from the two Swedish herds grouped into genotype PCV2b whereas the Norwegian isolate grouped into PCV2a. Cortisol levels were lower in herd C than in herds A and B. Conclusions: The most obvious difference between the Swedish finishing herds and the Norwegian herd was the time of infection with PCV2 in relation to the time of allocation, as well as the genotype of PCV2. Clinical PMWS was preceded by low levels of serum antibodies and a high load of PCV2 but did not develop in all such animals. It is notable that herd A became affected by PMWS after errors in management routine, emphasising the importance of proper hygiene and general disease-preventing measures

    Dermatophytosis caused by trichophyton mentagrophytes complex in organic pigs

    Get PDF
    BackgroundDermatophytosis (ringworm) caused by members of the Trichophyton mentagrophytes complex is rarely diagnosed in pigs but has been recognized as an increasingly common infection in humans. Further, resistance to antifungal drugs have been reported both in Asia and in Europe. This is the first scientific report of infection by the T. mentagrophytes complex in pigs in the Nordic countries.Case presentationSkin lesions developed in grower pigs in an organic fattening pig farm with outdoor production and following laboratory analyses, dermatophytosis caused by members of the T. mentagrophytes complex was diagnosed. Infection was linked to poor hygiene, high humidity, and moderate outdoor temperatures, in combination with high pig density. A farm worker developed a skin lesion after close contact with affected pigs, which highlighted the zoonotic potential of porcine dermatophytosis. The dermatophytes may have originated from the herd supplying the growers where similar lesions occurred in pigs. Further, pigs from another organic fattening herd that received growers from the same supplier herd also developed dermatophytosis. The lesions healed without treatment as the housing conditions were improved. Isolation of affected pigs prevented spread to other pigsConclusionMembers of the T. mentagrophytes complex can cause ringworm in pigs. The fungi probably persist in the haircoat and may cause overt disease when environmental conditions promote growth of mycelia

    VP201 From A Systematic Review To Addressing Evidence Gaps

    No full text

    Use-centred design of medical and health care technology: a pilot study of field tests as a development tool

    No full text
    The purpose of the project described in the paper was to develop a process through which users, staff as well as patients, can be involved in field evaluations of medical and health-care technology. Interviews with different stakeholders and the experiences from four case studies have led to the following conclusions: Users have the potential to act as active evaluators rather than passive subjects or participants only. However, user involvement in field evaluations must be supported by a formation of facilitators or ‘door openers’ to the health-care organization, moderators enhancing the dialogue between developers and users, and mentors for the users acting as evaluators

    Dermatophytosis caused by Trichophyton mentagrophytes complex in organic pigs

    No full text
    Abstract Background Dermatophytosis (ringworm) caused by members of the Trichophyton mentagrophytes complex is rarely diagnosed in pigs but has been recognized as an increasingly common infection in humans. Further, resistance to antifungal drugs have been reported both in Asia and in Europe. This is the first scientific report of infection by the T. mentagrophytes complex in pigs in the Nordic countries. Case presentation Skin lesions developed in grower pigs in an organic fattening pig farm with outdoor production and following laboratory analyses, dermatophytosis caused by members of the T. mentagrophytes complex was diagnosed. Infection was linked to poor hygiene, high humidity, and moderate outdoor temperatures, in combination with high pig density. A farm worker developed a skin lesion after close contact with affected pigs, which highlighted the zoonotic potential of porcine dermatophytosis. The dermatophytes may have originated from the herd supplying the growers where similar lesions occurred in pigs. Further, pigs from another organic fattening herd that received growers from the same supplier herd also developed dermatophytosis. The lesions healed without treatment as the housing conditions were improved. Isolation of affected pigs prevented spread to other pigs Conclusion Members of the T. mentagrophytes complex can cause ringworm in pigs. The fungi probably persist in the haircoat and may cause overt disease when environmental conditions promote growth of mycelia
    corecore