204 research outputs found

    Human 3D Airway Tissue Models for Real-Time Microscopy: Visualizing Respiratory Virus Spreading

    Get PDF
    Our knowledge about respiratory virus spreading is mostly based on monolayer cultures that hardly reflect the complex organization of the airway epithelium. Thus, there is a strong demand for biologically relevant models. One possibility to study virus spreading at the cellular level is real-time imaging. In an attempt to visualize virus spreading under somewhat more physiological conditions, Calu-3 cells and human primary fibroblasts were co-cultured submerged or as air-liquid interface (ALI). An influenza A virus (IAV) replicating well in cell culture, and carrying a red fluorescent protein (RFP) reporter gene was used for real-time imaging. Our three-dimensional (3D) models exhibited important characteristics of native airway epithelium including a basement membrane, tight junctions and, in ALI models, strong mucus production. In submerged models, first fluorescence signals appeared between 9 and 12 h post infection (hpi) with a low multiplicity of infection of 0.01. Virus spreading further proceeded in the immediate vicinity of infected cells. In ALI models, RFP was found at 22 hpi and later. Consequently, the progression of infection was delayed, in contrast to the submerged model. With these features, we believe that our 3D airway models can deliver new insights in the spreading of IAV and other respiratory viruses

    Guidelines for evaluating performance of oyster habitat restoration should include tidal emersion: reply to Baggett et al.

    Get PDF
    Baggett et al. (2015) identified a set of three universal environmental variables to be monitored for evaluating all oyster habitat restoration projects: salinity, temperature, and dissolved oxygen. Perhaps evidencing a bias toward subtidal reefs, this set of parameters omits another first-order environmental factor, tidal emersion. Intertidal oyster reefs can be the dominant reef habitat in estuaries, with clear zonation in oyster performance across the intertidal exposure gradient. Therefore, we propose to include tidal emersion as a fourth universal environmental parameter when designing and evaluating oyster restoration projects to better encompass the whole environmental spectrum along which reefs occur

    Persisting Cough as the Single Presenting Symptom of an Intrathoracic Tumor in a Nine-Month-Old Child with Adenovirus Airway Infection

    Get PDF
    We report on a nine-month-old girl who presented with persisting cough, and diminished ventilation of the left hemithorax. Viral pneumonia was suspected after Adenovirus detection by PCR, but chest X-rays showed a persistent shadowing of the left hemithorax and persistent coughing despite clinical improvement. Because of the discrepancy between clinical and radiological signs further investigations by ultrasound and CT scan were performed, which visualized an intrathroracic tumor. Histopathology confirmed diagnosis of a teratoma. This case highlights the need for careful evaluation by the treating physicians. If the chest X-ray provides a discrepancy to the clinical findings or persistent pathologies exist, differential diagnosis should be discussed and further diagnostics be performed

    Guidelines for evaluating performance of oyster habitat restoration should include tidal emersion: Reply to Baggett et al.

    Get PDF
    Baggett et al. (2015) identified a set of three universal environmental variables to be monitored for evaluating all oyster habitat restoration projects: salinity, temperature, and dissolved oxygen. Perhaps evidencing a bias toward subtidal reefs, this set of parameters omits another first-order environmental factor, tidal emersion. Intertidal oyster reefs can be the dominant reef habitat in estuaries, with clear zonation in oyster performance across the intertidal exposure gradient. Therefore, we propose to include tidal emersion as a fourth universal environmental parameter when designing and evaluating oyster restoration projects to better encompass the whole environmental spectrum along which reefs occur

    Adult diagnosis of Swyer-James-MacLeod syndrome: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Swyer-James-MacLeod syndrome or unilateral hyperlucent lung syndrome is a rare entity associated with postinfectious bronchiolitis obliterans occurring in childhood. It is characterized by hypoplasia and/or agenesis of the pulmonary arteries resulting in pulmonary parenchyma hypoperfusion.</p> <p>Case presentation</p> <p>Here we report the case of a 53-year-old Caucasian woman with Swyer-James-MacLeod syndrome found in the differential diagnosis workup for a new onset of heart failure, secondary to pulmonary arterial hypertension complicated by a patent ductus arteriosus.</p> <p>Conclusion</p> <p>Typically, this disorder is diagnosed in childhood after evaluation for recurrent respiratory infections, but sometimes an indolent course means diagnosis is not made until adulthood.</p

    The Karolinska NeuroCOVID study protocol: Neurocognitive impairment, biomarkers and advanced imaging in critical care survivors

    Get PDF
    Background: This is the study plan of the Karolinska NeuroCOVID study, a study of neurocognitive impairment after severe COVID-19, relating post-intensive care unit (ICU) cognitive and neurological deficits to biofluid markers and MRI. The COVID-19 pandemic has posed enormous health challenges to individuals and health-care systems worldwide. An emerging feature of severe COVID-19 is that of temporary and extended neurocognitive impairment, exhibiting a myriad of symptoms and signs. The causes of this symptomatology have not yet been fully elucidated. Methods: In this study, we aim to investigate patients treated for severe COVID-19 in the ICU, as to describe and relate serum-, plasma- and cerebrospinal fluid-borne molecular and cellular biomarkers of immune activity, coagulopathy, cerebral damage, neuronal inflammation, and degeneration, to the temporal development of structural and functional changes within the brain as evident by serial MRI and extensive cognitive assessments at 3–12 months after ICU discharge. Results: To date, we have performed 51 3-month follow-up MRIs in the ICU survivors. Of these, two patients (~4%) have had incidental findings on brain MRI findings requiring activation of the Incidental Findings Management Plan. Furthermore, the neuropsychological and neurological examinations have so far revealed varying and mixed patterns. Several patients expressed cognitive and/or mental concerns and fatigue, complaints closely related to brain fog. Conclusion: The study goal is to gain a better understanding of the pathological mechanisms and neurological consequences of this new disease, with a special emphasis on neurodegenerative and neuroinflammatory processes, in order to identify targets of intervention and rehabilitation

    In situ guided tissue regeneration in musculoskeletal diseases and aging: Implementing pathology into tailored tissue engineering strategies

    Get PDF
    In situ guided tissue regeneration, also addressed as in situ tissue engineering or endogenous regeneration, has a great potential for population-wide “minimal invasive” applications. During the last two decades, tissue engineering has been developed with remarkable in vitro and preclinical success but still the number of applications in clinical routine is extremely small. Moreover, the vision of population-wide applications of ex vivo tissue engineered constructs based on cells, growth and differentiation factors and scaffolds, must probably be deemed unrealistic for economic and regulation-related issues. Hence, the progress made in this respect will be mostly applicable to a fraction of post-traumatic or post-surgery situations such as big tissue defects due to tumor manifestation. Minimally invasive procedures would probably qualify for a broader application and ideally would only require off the shelf standardized products without cells. Such products should mimic the microenvironment of regenerating tissues and make use of the endogenous tissue regeneration capacities. Functionally, the chemotaxis of regenerative cells, their amplification as a transient amplifying pool and their concerted differentiation and remodeling should be addressed. This is especially important because the main target populations for such applications are the elderly and diseased. The quality of regenerative cells is impaired in such organisms and high levels of inhibitors also interfere with regeneration and healing. In metabolic bone diseases like osteoporosis, it is already known that antagonists for inhibitors such as activin and sclerostin enhance bone formation. Implementing such strategies into applications for in situ guided tissue regeneration should greatly enhance the efficacy of tailored procedures in the future

    Electrospun poly(d/l-lactide-co-l-lactide) hybrid matrix: a novel scaffold material for soft tissue engineering

    Get PDF
    Electrospinning is a long-known polymer processing technique that has received more interest and attention in recent years due to its versatility and potential use in the field of biomedical research. The fabrication of three-dimensional (3D) electrospun matrices for drug delivery and tissue engineering is of particular interest. In the present study, we identified optimal conditions to generate novel electrospun polymeric scaffolds composed of poly-d/l-lactide and poly-l-lactide in the ratio 50:50. Scanning electron microscopic analyses revealed that the generated poly(d/l-lactide-co-l-lactide) electrospun hybrid microfibers possessed a unique porous high surface area mimicking native extracellular matrix (ECM). To assess cytocompatibility, we isolated dermal fibroblasts from human skin biopsies. After 5 days of in vitro culture, the fibroblasts adhered, migrated and proliferated on the newly created 3D scaffolds. Our data demonstrate the applicability of electrospun poly(d/l-lactide-co-l-lactide) scaffolds to serve as substrates for regenerative medicine applications with special focus on skin tissue engineering

    Follistatin Effects in Migration, Vascularization, and Osteogenesis in vitro and Bone Repair in vivo

    Get PDF
    The use of biomaterials and signaling molecules to induce bone formation is a promising approach in the field of bone tissue engineering. Follistatin (FST) is a glycoprotein able to bind irreversibly to activin A, a protein that has been reported to inhibit bone formation. We investigated the effect of FST in critical processes for bone repair, such as cell recruitment, osteogenesis and vascularization, and ultimately its use for bone tissue engineering. In vitro, FST promoted mesenchymal stem cell (MSC) and endothelial cell (EC) migration as well as essential steps in the formation and expansion of the vasculature such as EC tube-formation and sprouting. FST did not enhance osteogenic differentiation of MSCs, but increased committed osteoblast mineralization. In vivo, FST was loaded in an in situ gelling formulation made by alginate and recombinant collagen-based peptide microspheres and implanted in a rat calvarial defect model. Two FST variants (FST288 and FST315) with major differences in their affinity to cell-surface proteoglycans, which may influence their effect upon in vivo bone repair, were tested. In vitro, most of the loaded FST315 was released over 4 weeks, contrary to FST288, which was mostly retained in the biomaterial. However, none of the FST variants improved in vivo bone healing compared to control. These results demonstrate that FST enhances crucial processes needed for bone repair. Further studies need to investigate the optimal FST carrier for bone regeneration
    corecore