130 research outputs found

    Density Estimation of Spatio-Temporal Point Patterns Using Moran’s Statistics

    Get PDF
    Moran’s Index is a statistic that measures spatial autocorrelation, quantifying the degree of dispersion (or spread) of objects in space. When investigating data in an area, a single Moran statistic may not give a sufficient summary of the autocorrelation spread. However, by partitioning the area and taking the Moran statistic of each subarea, we discover patterns of the local neighbors not otherwise apparent. In this paper, we consider the model of the spread of an infectious disease, incorporate time factor, and simulate a multilevel Poisson process where the dependence among the levels is captured by the rate of increase of the disease spread over time, steered by a common factor in the scale. The main consequence of our results is that our Moran statistic is calculated from an explicit algorithm in a Monte Carlo simulation setting. Results are compared to Geary’s statistic and estimates of parameters under Poisson process are given

    Enhanced Inference for Finite Population Sampling-Based Prevalence Estimation with Misclassification Errors

    Full text link
    Epidemiologic screening programs often make use of tests with small, but non-zero probabilities of misdiagnosis. In this article, we assume the target population is finite with a fixed number of true cases, and that we apply an imperfect test with known sensitivity and specificity to a sample of individuals from the population. In this setting, we propose an enhanced inferential approach for use in conjunction with sampling-based bias-corrected prevalence estimation. While ignoring the finite nature of the population can yield markedly conservative estimates, direct application of a standard finite population correction (FPC) conversely leads to underestimation of variance. We uncover a way to leverage the typical FPC indirectly toward valid statistical inference. In particular, we derive a readily estimable extra variance component induced by misclassification in this specific but arguably common diagnostic testing scenario. Our approach yields a standard error estimate that properly captures the sampling variability of the usual bias-corrected maximum likelihood estimator of disease prevalence. Finally, we develop an adapted Bayesian credible interval for the true prevalence that offers improved frequentist properties (i.e., coverage and width) relative to a Wald-type confidence interval. We report the simulation results to demonstrate the enhanced performance of the proposed inferential methods

    Tailoring Capture-Recapture Methods to Estimate Registry-Based Case Counts Based on Error-Prone Diagnostic Signals

    Full text link
    Surveillance research is of great importance for effective and efficient epidemiological monitoring of case counts and disease prevalence. Taking specific motivation from ongoing efforts to identify recurrent cases based on the Georgia Cancer Registry, we extend recently proposed "anchor stream" sampling design and estimation methodology. Our approach offers a more efficient and defensible alternative to traditional capture-recapture (CRC) methods by leveraging a relatively small random sample of participants whose recurrence status is obtained through a principled application of medical records abstraction. This sample is combined with one or more existing signaling data streams, which may yield data based on arbitrarily non-representative subsets of the full registry population. The key extension developed here accounts for the common problem of false positive or negative diagnostic signals from the existing data stream(s). In particular, we show that the design only requires documentation of positive signals in these non-anchor surveillance streams, and permits valid estimation of the true case count based on an estimable positive predictive value (PPV) parameter. We borrow ideas from the multiple imputation paradigm to provide accompanying standard errors, and develop an adapted Bayesian credible interval approach that yields favorable frequentist coverage properties. We demonstrate the benefits of the proposed methods through simulation studies, and provide a data example targeting estimation of the breast cancer recurrence case count among Metro Atlanta area patients from the Georgia Cancer Registry-based Cancer Recurrence Information and Surveillance Program (CRISP) database

    Impacts of Census Differential Privacy for Small-Area Disease Mapping to Monitor Health Inequities

    Full text link
    The US Census Bureau will implement a new privacy-preserving disclosure avoidance system (DAS), which includes application of differential privacy, on publicly-released 2020 census data. There are concerns that the DAS may bias small-area and demographically-stratified population counts, which play a critical role in public health research, serving as denominators in estimation of disease/mortality rates. Employing three DAS demonstration products, we quantify errors attributable to reliance on DAS-protected denominators in standard small-area disease mapping models for characterizing health inequities. We conduct simulation studies and real data analyses of inequities in premature mortality at the census tract level in Massachusetts and Georgia. Results show that overall patterns of inequity by racialized group and economic deprivation level are not compromised by the DAS. While early versions of DAS induce errors in mortality rate estimation that are larger for Black than non-Hispanic white populations in Massachusetts, this issue is ameliorated in newer DAS versions

    Periurban Trypanosoma cruzi–infected Triatoma infestans, Arequipa, Peru

    Get PDF
    Simple interventions may facilitate vector control and prevent periurban transmission of Chagas disease
    • …
    corecore