1 research outputs found

    Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems?

    Full text link
    peer reviewedAgriculture, and livestock production in particular, is criticized for being a contributor to global environmental change, including emissions of greenhouse gases (GHG). Methane (CH4) from grazing ruminants accounts for most of livestock's carbon footprint because a large share of them are reared under suboptimal grazing conditions, usually resulting in both low herbage intake and animal performance. Consequently, the CH4 quota attributed to animal maintenance is spread across few or no animal outputs, increasing the CH4 intensity [g CH4/kg live weight (LW) gain or g CH4/kg milk yield]. In this review, the generalized idea relating tropical pastures with low quality and intrinsically higher CH4 intensity is challenged by showing evidence that emissions from animals grazing tropical pastures can equal those of temperate grasses. We demonstrate the medium-to-high mitigation potential of some grazing management strategies to mitigate CH4 emissions from grazing ruminants and stress the predominant role that sward canopy structure (e.g., height) has over animal behavioral responses (e.g., intake rate), daily forage intake and resulting CH4 emissions. From this ecological perspective, we identify a grazing management concept aiming to offer the best sward structure that allows animals to optimize their daily herbage intake, creating opportunities to reduce CH4 intensity. We show the trade-off between animal performance and CH4 intensity, stressing that mitigation is substantial when grazing management is conducted under light-to-moderate intensities and optimize herbage intake and animal performance. We conclude that optimizing LW gain of grazing sheep and cattle to a threshold of 0.14 and 0.7 kg/day, respectively, would dramatically reduce CH4 intensity to approximately 0.2 kg CH4/kg LW gain, as observed in some intensive feeding systems. This could represent a mitigation potential of around 55% for livestock commodities in pasture-based systems. Our results offer new insights to the debate concerning mitigation of environmental impacts of pastoral ecosystems
    corecore