22,604 research outputs found

    Observation of Single Transits in Supercooled Monatomic Liquids

    Full text link
    A transit is the motion of a system from one many-particle potential energy valley to another. We report the observation of transits in molecular dynamics (MD) calculations of supercooled liquid argon and sodium. Each transit is a correlated simultaneous shift in the equilibrium positions of a small local group of particles, as revealed in the fluctuating graphs of the particle coordinates versus time. This is the first reported direct observation of transit motion in a monatomic liquid in thermal equilibrium. We found transits involving 2 to 11 particles, having mean shift in equilibrium position on the order of 0.4 R_1 in argon and 0.25 R_1 in sodium, where R_1 is the nearest neighbor distance. The time it takes for a transit to occur is approximately one mean vibrational period, confirming that transits are fast.Comment: 19 pages, 8 figure

    Lipid-absorbing Polymers

    Get PDF
    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water

    A 128K-bit CCD buffer memory system

    Get PDF
    A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. 8K-bit CCD shift register memories were used to construct a feasibility model 128K-bit buffer memory system. Peak power dissipation during a data transfer is less than 7 W., while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. Descriptions are provided of both the buffer memory system and a custom tester that was used to exercise the memory. The testing procedures and testing results are discussed. Suggestions are provided for further development with regards to the utilization of advanced versions of CCD memory devices to both simplified and expanded memory system applications

    Exploring the Way to Approach the Efficiency Limit of Perovskite Solar Cells by Drift-Diffusion Model

    Full text link
    Drift-diffusion model is an indispensable modeling tool to understand the carrier dynamics (transport, recombination, and collection) and simulate practical-efficiency of solar cells (SCs) through taking into account various carrier recombination losses existing in multilayered device structures. Exploring the way to predict and approach the SC efficiency limit by using the drift-diffusion model will enable us to gain more physical insights and design guidelines for emerging photovoltaics, particularly perovskite solar cells. Our work finds out that two procedures are the prerequisites for predicting and approaching the SC efficiency limit. Firstly, the intrinsic radiative recombination needs to be corrected after adopting optical designs which will significantly affect the open-circuit voltage at its Shockley-Queisser limit. Through considering a detailed balance between emission and absorption of semiconductor materials at the thermal equilibrium, and the Boltzmann statistics at the non-equilibrium, we offer a different approach to derive the accurate expression of intrinsic radiative recombination with the optical corrections for semiconductor materials. The new expression captures light trapping of the absorbed photons and angular restriction of the emitted photons simultaneously, which are ignored in the traditional Roosbroeck-Shockley expression. Secondly, the contact characteristics of the electrodes need to be carefully engineered to eliminate the charge accumulation and surface recombination at the electrodes. The selective contact or blocking layer incorporated nonselective contact that inhibits the surface recombination at the electrode is another important prerequisite. With the two procedures, the accurate prediction of efficiency limit and precise evaluation of efficiency degradation for perovskite solar cells are attainable by the drift-diffusion model.Comment: 32 pages, 11 figure

    Adiabatic and Non-Adiabatic Contributions to the Free Energy from the Electron-Phonon Interaction for Na, K, Al, and Pb

    Full text link
    We calculate the adiabatic contributions to the free energy due to the electron--phonon interaction at intermediate temperatures, 0⩽kBT<ϵF0 \leqslant k_{B} T < \epsilon_{F} for the elemental metals Na, K, Al, and Pb. Using our previously published results for the nonadiabatic contributions we show that the adiabatic contribution, which is proportional to T2T^{2} at low temperatures and goes as T3T^{3} at high temperatures, dominates the nonadiabatic contribution for temperatures above a cross--over temperature, TcT_{c}, which is between 0.5 and 0.8 TmT_{m}, where TmT_{m} is the melting temperature of the metal. The nonadiabatic contribution falls as T−1T^{-1} for temperatures roughly above the average phonon frequency.Comment: Updated versio

    Low-energy interaction of composite spin-half systems with scalar and vector fields

    Get PDF
    We consider a composite spin-half particle moving in spatially-varying scalar and vector fields. The vector field is assumed to couple to a conserved charge, but no assumption is made about either the structure of the composite or its coupling to the scalar field. A general form for the piece of the spin-orbit interaction of the composite with the scalar and vector fields which is first-order in momentum transfer Q{\bf Q} and second-order in the fields is derived.Comment: 10 pages, RevTe

    SU(1,1)SU(1,1) and SU(2)SU(2) Perelomov number coherent states: algebraic approach for general systems

    Full text link
    We study some properties of the SU(1,1)SU(1,1) Perelomov number coherent states. The Schr\"odinger's uncertainty relationship is evaluated for a position and momentum-like operators (constructed from the Lie algebra generators) in these number coherent states. It is shown that this relationship is minimized for the standard coherent states. We obtain the time evolution of the number coherent states by supposing that the Hamiltonian is proportional to the third generator K0K_0 of the su(1,1)su(1,1) Lie algebra. Analogous results for the SU(2)SU(2) Perelomov number coherent states are found. As examples, we compute the Perelomov coherent states for the pseudoharmonic oscillator and the two-dimensional isotropic harmonic oscillator

    On the accuracy of the melting curves drawn from modelling a solid as an elastic medium

    Full text link
    An ongoing problem in the study of a classical many-body system is the characterization of its equilibrium behaviour by theory or numerical simulation. For purely repulsive particles, locating the melting line in the pressure-temperature plane can be especially hard if the interparticle potential has a softened core or contains some adjustable parameters. A method is hereby presented that yields reliable melting-curve topologies with negligible computational effort. It is obtained by combining the Lindemann melting criterion with a description of the solid phase as an elastic continuum. A number of examples are given in order to illustrate the scope of the method and possible shortcomings. For a two-body repulsion of Gaussian shape, the outcome of the present approach compares favourably with the more accurate but also more computationally demanding self-consistent harmonic approximation.Comment: 25 pages, 7 figure
    • …
    corecore