22,604 research outputs found
Observation of Single Transits in Supercooled Monatomic Liquids
A transit is the motion of a system from one many-particle potential energy
valley to another. We report the observation of transits in molecular dynamics
(MD) calculations of supercooled liquid argon and sodium. Each transit is a
correlated simultaneous shift in the equilibrium positions of a small local
group of particles, as revealed in the fluctuating graphs of the particle
coordinates versus time. This is the first reported direct observation of
transit motion in a monatomic liquid in thermal equilibrium. We found transits
involving 2 to 11 particles, having mean shift in equilibrium position on the
order of 0.4 R_1 in argon and 0.25 R_1 in sodium, where R_1 is the nearest
neighbor distance. The time it takes for a transit to occur is approximately
one mean vibrational period, confirming that transits are fast.Comment: 19 pages, 8 figure
Lipid-absorbing Polymers
The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water
A 128K-bit CCD buffer memory system
A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. 8K-bit CCD shift register memories were used to construct a feasibility model 128K-bit buffer memory system. Peak power dissipation during a data transfer is less than 7 W., while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. Descriptions are provided of both the buffer memory system and a custom tester that was used to exercise the memory. The testing procedures and testing results are discussed. Suggestions are provided for further development with regards to the utilization of advanced versions of CCD memory devices to both simplified and expanded memory system applications
Exploring the Way to Approach the Efficiency Limit of Perovskite Solar Cells by Drift-Diffusion Model
Drift-diffusion model is an indispensable modeling tool to understand the
carrier dynamics (transport, recombination, and collection) and simulate
practical-efficiency of solar cells (SCs) through taking into account various
carrier recombination losses existing in multilayered device structures.
Exploring the way to predict and approach the SC efficiency limit by using the
drift-diffusion model will enable us to gain more physical insights and design
guidelines for emerging photovoltaics, particularly perovskite solar cells. Our
work finds out that two procedures are the prerequisites for predicting and
approaching the SC efficiency limit. Firstly, the intrinsic radiative
recombination needs to be corrected after adopting optical designs which will
significantly affect the open-circuit voltage at its Shockley-Queisser limit.
Through considering a detailed balance between emission and absorption of
semiconductor materials at the thermal equilibrium, and the Boltzmann
statistics at the non-equilibrium, we offer a different approach to derive the
accurate expression of intrinsic radiative recombination with the optical
corrections for semiconductor materials. The new expression captures light
trapping of the absorbed photons and angular restriction of the emitted photons
simultaneously, which are ignored in the traditional Roosbroeck-Shockley
expression. Secondly, the contact characteristics of the electrodes need to be
carefully engineered to eliminate the charge accumulation and surface
recombination at the electrodes. The selective contact or blocking layer
incorporated nonselective contact that inhibits the surface recombination at
the electrode is another important prerequisite. With the two procedures, the
accurate prediction of efficiency limit and precise evaluation of efficiency
degradation for perovskite solar cells are attainable by the drift-diffusion
model.Comment: 32 pages, 11 figure
Adiabatic and Non-Adiabatic Contributions to the Free Energy from the Electron-Phonon Interaction for Na, K, Al, and Pb
We calculate the adiabatic contributions to the free energy due to the
electron--phonon interaction at intermediate temperatures, for the elemental metals Na, K, Al, and Pb. Using our
previously published results for the nonadiabatic contributions we show that
the adiabatic contribution, which is proportional to at low
temperatures and goes as at high temperatures, dominates the
nonadiabatic contribution for temperatures above a cross--over temperature,
, which is between 0.5 and 0.8 , where is the melting
temperature of the metal. The nonadiabatic contribution falls as for
temperatures roughly above the average phonon frequency.Comment: Updated versio
Low-energy interaction of composite spin-half systems with scalar and vector fields
We consider a composite spin-half particle moving in spatially-varying scalar
and vector fields. The vector field is assumed to couple to a conserved charge,
but no assumption is made about either the structure of the composite or its
coupling to the scalar field. A general form for the piece of the spin-orbit
interaction of the composite with the scalar and vector fields which is
first-order in momentum transfer and second-order in the fields is
derived.Comment: 10 pages, RevTe
and Perelomov number coherent states: algebraic approach for general systems
We study some properties of the Perelomov number coherent states.
The Schr\"odinger's uncertainty relationship is evaluated for a position and
momentum-like operators (constructed from the Lie algebra generators) in these
number coherent states. It is shown that this relationship is minimized for the
standard coherent states. We obtain the time evolution of the number coherent
states by supposing that the Hamiltonian is proportional to the third generator
of the Lie algebra. Analogous results for the Perelomov
number coherent states are found. As examples, we compute the Perelomov
coherent states for the pseudoharmonic oscillator and the two-dimensional
isotropic harmonic oscillator
On the accuracy of the melting curves drawn from modelling a solid as an elastic medium
An ongoing problem in the study of a classical many-body system is the
characterization of its equilibrium behaviour by theory or numerical
simulation. For purely repulsive particles, locating the melting line in the
pressure-temperature plane can be especially hard if the interparticle
potential has a softened core or contains some adjustable parameters. A method
is hereby presented that yields reliable melting-curve topologies with
negligible computational effort. It is obtained by combining the Lindemann
melting criterion with a description of the solid phase as an elastic
continuum. A number of examples are given in order to illustrate the scope of
the method and possible shortcomings. For a two-body repulsion of Gaussian
shape, the outcome of the present approach compares favourably with the more
accurate but also more computationally demanding self-consistent harmonic
approximation.Comment: 25 pages, 7 figure
- …