862 research outputs found
Adaptations of locusts and grasshoppers to the low and variable rainfall of Australia
In Australia, where approximately 80% of the land area is arid or semiarid, rainfall is the major factor limiting acridid populations. Rainfall is not only limiting in terms of quantity but also in being highly variable, both temporally and spatially. In this paper, the main adaptations seen in Australian Acrididae to overcome limiting rainfall are discussed with special reference to economically important species.
In the arid to semiarid subtropics (lat 23–33°S) rainfall is slightly summer-dominant but extended dry periods can occur in any season. Chortoicetes terminifera, the main pest species, avoids dry periods through embryonic diapause or survives dry periods as quiescent eggs or adults. Migration is critical for survival as it allows locusts to locate areas of localized rainfall. Outbreaks are frequent and develop when enough rain falls to allow continuous breeding over three to four generations.
In temperate areas of subcoastal southern Australia, summers are dry and most rain falls in winter or early spring. Austroicetes cruciata, a univoltine pest species, avoids the dry summers by having an embryonic diapause between summer and early winter.
In the tropical north (lat 13–23°S), rainfall is strongly summer-dominant and Austracris guttulosa, another univoltine species, survives the dry winter as immature adults in reproductive diapause. Adults mature after feeding on the green vegetation present following early rains of the wet season. But the early rains are often localized and adults migrate until they encounter these localized areas of rain. Adults then mature and lay, but the survival of their offspring eggs and very young nymphs is assured only if there is further rain within 6 weeks. Outbreaks develop only when there are several years of regular rains both in outbreak areas and adjacent areas of the arid zone.
Locusta migratoria does not have a stage that can survive extended dry periods. Consequently, it is mainly restricted to subcoastal areas of moderate rainfall. In the main outbreak areas of subtropical Queensland, populations often decline during the commonly dry winters but outbreaks develop when good rain falls in all seasons
Sure success partial search
Partial search has been proposed recently for finding the target block
containing a target element with fewer queries than the full Grover search
algorithm which can locate the target precisely. Since such partial searches
will likely be used as subroutines for larger algorithms their success rate is
important. We propose a partial search algorithm which achieves success with
unit probability
Pair bond endurance promotes cooperative food defense and inhibits conflict in coral reef butterflyfish
Pair bonding is generally linked to monogamous mating systems, where the reproductive benefits of extended mate guarding and/or of bi-parental care are considered key adaptive functions. However, in some species, including coral reef butterflyfishes (f. Chaetodonitidae), pair bonding occurs in sexually immature and homosexual partners, and in the absence of parental care, suggesting there must be non-reproductive adaptive benefits of pair bonding. Here, we examined whether pair bonding butterflyfishes cooperate in defense of food, conferring direct benefits to one or both partners. We found that pairs of Chaetodon lunulatus and C. baronessa use contrasting cooperative strategies. In C. lunulatus, both partners mutually defend their territory, while in C. baronessa, males prioritize territory defence; conferring improvements in feeding and energy reserves in both sexes relative to solitary counterparts. We further demonstrate that partner fidelity contributes to this function by showing that re-pairing invokes intra-pair conflict and inhibits cooperatively-derived feeding benefits, and that partner endurance is required for these costs to abate. Overall, our results suggest that in butterflyfishes, pair bonding enhances cooperative defense of prey resources, ultimately benefiting both partners by improving food resource acquisition and energy reserves
Statistics of Coulomb blockade peak spacings for a partially open dot
We show that randomness of the electron wave functions in a quantum dot
contributes to the fluctuations of the positions of the conductance peaks. This
contribution grows with the conductance of the junctions connecting the dot to
the leads. It becomes comparable with the fluctuations coming from the
randomness of the single particle spectrum in the dot while the Coulomb
blockade peaks are still well-defined. In addition, the fluctuations of the
peak spacings are correlated with the fluctuations of the conductance peak
heights.Comment: 13 pages, 1 figur
Supporting ethical, independent learning behavior among university students in the Arabian Gulf
© Springer International Publishing Switzerland 2014. Students in the Arabian Gulf region and the world over confront plagiarism temptations wittingly or unwittingly due to the multitude of free and easily available electronic sources of information. Rather than develop independent learning skills and academic integrity, students are often taken advantage of by essay mills that sell readymade essays. Instructors at times compound the problem by repeatedly recycling course assignments and tasks. Furthermore, there have been reports of the use of social networking sites for outsourcing and contract cheating in student assignments. This paper discusses how educators in an institution of higher learning in the UAE assist students to develop good academic skills. Data collection is with the use of an online survey questionnaire. Concurring with Wheeler and Anderson (2010) who call for appropriate and comprehensive institutional policies and guidelines for dealing with plagiarism, practical examples of the processes and procedures used at these institutions are provided
Non-magnetic impurity scattering in a superconductor near a van Hove point: Zn versus Ni in the cuprates
We consider the effect of non-magnetic impurities in a
superconductor with \ef close to a van Hove singularity. It is shown that the
non-trivial density of states (DOS) allows for resonant scattering already at
intermediate potential strengths eV. The residual DOS at
\ef, and the \tc suppression rate are found to strongly depend on the carrier
concentration. Quantitative agreement with experiments on Zn and Ni doped
cuprates is obtained by adjusting a single parameter, .Comment: 4 pages uuencoded compressed Postscript (Minor changes
Bosonic Excitations in Random Media
We consider classical normal modes and non-interacting bosonic excitations in
disordered systems. We emphasise generic aspects of such problems and parallels
with disordered, non-interacting systems of fermions, and discuss in particular
the relevance for bosonic excitations of symmetry classes known in the
fermionic context. We also stress important differences between bosonic and
fermionic problems. One of these follows from the fact that ground state
stability of a system requires all bosonic excitation energy levels to be
positive, while stability in systems of non-interacting fermions is ensured by
the exclusion principle, whatever the single-particle energies. As a
consequence, simple models of uncorrelated disorder are less useful for bosonic
systems than for fermionic ones, and it is generally important to study the
excitation spectrum in conjunction with the problem of constructing a
disorder-dependent ground state: we show how a mapping to an operator with
chiral symmetry provides a useful tool for doing this. A second difference
involves the distinction for bosonic systems between excitations which are
Goldstone modes and those which are not. In the case of Goldstone modes we
review established results illustrating the fact that disorder decouples from
excitations in the low frequency limit, above a critical dimension , which
in different circumstances takes the values and . For bosonic
excitations which are not Goldstone modes, we argue that an excitation density
varying with frequency as is a universal
feature in systems with ground states that depend on the disorder realisation.
We illustrate our conclusions with extensive analytical and some numerical
calculations for a variety of models in one dimension
The effects of dopaminergic/serotonergic reuptake inhibition on maternal behavior, maternal aggression, and oxytocin in the rat
Studies using dopaminergic and serotonergic agonists or antagonists implicate involvement of these systems in various aspects of early maternal behavior and postpartum aggression towards an intruder in rats, both of which are associated with the presence of oxytocin in specific brain regions. It is unclear however, if or how long-term uptake inhibition of either neurotransmitter system alone or in combination, affects oxytocin system dynamics or maternal behavior/aggression. Pregnant women frequently take drugs (antidepressants, cocaine) that induce long-term reuptake inhibition of dopamine and/or serotonin, thus it is important to understand these effects on behavior and biochemistry. Rat dams were treated throughout gestation with amfonelic acid, fluoxetine, or a combination of both, to investigate effects of reuptake inhibition of dopamine and serotonin systems respectively, on maternal behavior, aggression and oxytocin. The more appetitive aspects of maternal behavior (nesting, licking, touching) and activity were increased by the low dose of amfonelic acid, high dose of fluoxetine, or the high dose combination more than other treatments. Aggression was decreased by amfonelic acid and somewhat increased by fluoxetine. Dopamine uptake inhibition appears to have a strong effect on hippocampal oxytocin levels, while receptor dynamics may be more strongly affected by serotonin uptake inhibition
A Solvable Regime of Disorder and Interactions in Ballistic Nanostructures, Part I: Consequences for Coulomb Blockade
We provide a framework for analyzing the problem of interacting electrons in
a ballistic quantum dot with chaotic boundary conditions within an energy
(the Thouless energy) of the Fermi energy. Within this window we show that the
interactions can be characterized by Landau Fermi liquid parameters. When ,
the dimensionless conductance of the dot, is large, we find that the disordered
interacting problem can be solved in a saddle-point approximation which becomes
exact as (as in a large-N theory). The infinite theory shows a
transition to a strong-coupling phase characterized by the same order parameter
as in the Pomeranchuk transition in clean systems (a spontaneous
interaction-induced Fermi surface distortion), but smeared and pinned by
disorder. At finite , the two phases and critical point evolve into three
regimes in the plane -- weak- and strong-coupling regimes separated
by crossover lines from a quantum-critical regime controlled by the quantum
critical point. In the strong-coupling and quantum-critical regions, the
quasiparticle acquires a width of the same order as the level spacing
within a few 's of the Fermi energy due to coupling to collective
excitations. In the strong coupling regime if is odd, the dot will (if
isolated) cross over from the orthogonal to unitary ensemble for an
exponentially small external flux, or will (if strongly coupled to leads) break
time-reversal symmetry spontaneously.Comment: 33 pages, 14 figures. Very minor changes. We have clarified that we
are treating charge-channel instabilities in spinful systems, leaving
spin-channel instabilities for future work. No substantive results are
change
- …