13 research outputs found

    Electron transport in Coulomb- and tunnel-coupled one-dimensional systems

    Full text link
    We develop a linear theory of electron transport for a system of two identical quantum wires in a wide range of the wire length L, unifying both the ballistic and diffusive transport regimes. The microscopic model, involving the interaction of electrons with each other and with bulk acoustical phonons allows a reduction of the quantum kinetic equation to a set of coupled equations for the local chemical potentials for forward- and backward-moving electrons in the wires. As an application of the general solution of these equations, we consider different kinds of electrical contacts to the double-wire system and calculate the direct resistance, the transresistance, in the presence of tunneling and Coulomb drag, and the tunneling resistance. If L is smaller than the backscattering length l_P, both the tunneling and the drag lead to a negative transresistance, while in the diffusive regime (L >>l_P) the tunneling opposes the drag and leads to a positive transresistance. If L is smaller than the phase-breaking length, the tunneling leads to interference oscillations of the resistances that are damped exponentially with L.Comment: Text 14 pages in Latex/Revtex format, 4 Postscript figure

    Far-Field Species Distribution Measurements on the BHT-600 Hall Thruster Cluster

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76148/1/AIAA-2007-5304-543.pd

    Etching of random solids: hardening dynamics and self-organized fractality

    Full text link
    When a finite volume of an etching solution comes in contact with a disordered solid, a complex dynamics of the solid-solution interface develops. Since only the weak parts are corroded, the solid surface hardens progressively. If the etchant is consumed in the chemical reaction, the corrosion dynamics slows down and stops spontaneously leaving a fractal solid surface, which reveals the latent percolation criticality hidden in any random system. Here we introduce and study, both analytically and numerically, a simple model for this phenomenon. In this way we obtain a detailed description of the process in terms of percolation theory. In particular we explain the mechanism of hardening of the surface and connect it to Gradient Percolation.Comment: Latex, aipproc, 6 pages, 3 figures, Proceedings of 6th Granada Seminar on Computational Physic

    Plume Diagnostics Supporting Magnetic Nozzle Plasma Detachment Demonstration Experiment

    No full text

    The Effects of Background Pressure on Hall Thruster Operation

    No full text
    corecore